-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathdataloader.lua
134 lines (119 loc) · 4.27 KB
/
dataloader.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
local datasets = require 'dataset-init'
local Threads = require 'threads'
Threads.serialization('threads.sharedserialize')
local M = {}
local DataLoader = torch.class('DataLoader', M)
function DataLoader.getDataFaces(opt, split)
print('=> Building dataset...')
base_dir = opt.data..'landmarks/'
dirs = paths.dir(base_dir)
lines = {}
for i=1,#dirs do
if string.sub(dirs[i],1,1) ~= '.' then
for f in paths.files(base_dir..dirs[i],'.mat') do
if not string.find(f, "test") then
lines[#lines+1] = f
end
end
end
end
print('=> Dataset built. '..#lines..' images were found.')
return lines
end
function DataLoader.create(opt,split)
local _dataset = nil
local dataAnnot = DataLoader.getDataFaces(opt,split)
return M.DataLoader(_dataset,opt,split,dataAnnot)
end
function DataLoader:__init(_dataset, opt, split, dataAnnot)
local manualSeed = opt.manualSeed
local function init()
local datasets = require 'dataset-init'
trainLoader, valLoader = datasets.create(opt,split,dataAnnot)
end
local function main(idx)
if manualSeed ~= 0 then
torch.manualSeed(manualSeed + idx)
end
torch.setnumthreads(1)
_G.dataset = trainLoader
return trainLoader:size()
end
local threads, sizes = Threads(opt.nThreads,init, main)
self.nCrops = 1
self.threads = threads
self.__size = sizes[1][1]
self.batchSize = math.floor(opt.batchSize / self.nCrops)
self.opt = opt
self.split = split
self.dataAnnot = dataAnnot
end
function DataLoader:size()
return math.ceil(self.__size/self.batchSize)
end
function DataLoader:annot()
trainLoader = datasets.create(self.opt,self.split,self.dataAnnot)
return trainLoader.annot
end
function DataLoader:run()
local threads = self.threads
local size, batchSize = self.__size, self.batchSize
local perm = torch.randperm(size)
local idx, sample = 1, nil
local function enqueue()
while idx <= size and threads:acceptsjob() do
local indices = perm:narrow(1,idx,math.min(batchSize,size-idx+1))
threads:addjob(
function(indices,nCrops)
local sz = indices:size(1)
local batch, imageSize
local target
local indicesCopy = indices
for i,idx in ipairs(indices:totable()) do
local sample, label = _G.dataset:get(false,idx)
local input, label = _G.dataset:preprocess(sample, label)
if not batch then
imageSize = input:size():totable()
if nCrops > 1 then table.remove(imageSize,1) end
batch = torch.FloatTensor(sz,nCrops, table.unpack(imageSize))
end
if not target then
targetSize = label:size():totable()
target = torch.FloatTensor(sz,nCrops, table.unpack(targetSize))
end
batch[i]:copy(input)
target[i]:copy(label)
end
collectgarbage()
return {
input = batch:view(sz*nCrops,table.unpack(imageSize)),
label = target:view(sz*nCrops,table.unpack(targetSize)),
indx = indicesCopy ,
}
end,
function(_sample_)
sample = _sample_
end,
indices,
self.nCrops
)
idx = idx + batchSize
end
end
local n = 0
local function loop()
enqueue()
if not threads:hasjob() then
return nil
end
threads:dojob()
if threads:haserror() then
threads:synchronize()
end
enqueue()
n = n+1
return n, sample
end
return loop
end
return M.DataLoader