-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel_synthetic.py
211 lines (160 loc) · 7.81 KB
/
model_synthetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch.nn as nn
import torch
import torch.nn.functional as F
class Attn(nn.Module):
def __init__(self, method, hidden_size):
super(Attn, self).__init__()
self.method = method
if self.method not in ['dot', 'general', 'concat','concat2']:
raise ValueError(self.method, "is not an appropriate attention method.")
self.hidden_size = hidden_size
if self.method == 'general':
self.attn = nn.Linear(self.hidden_size, hidden_size)
elif self.method == 'concat':
self.attn = nn.Linear(self.hidden_size * 2, hidden_size)
self.v = nn.Parameter(torch.FloatTensor(hidden_size))
elif self.method == 'concat2':
self.attn = nn.Linear(self.hidden_size * 3, hidden_size)
self.v = nn.Parameter(torch.FloatTensor(hidden_size))
def dot_score(self, hidden, encoder_output):
return torch.sum(hidden * encoder_output, dim=2)
def general_score(self, hidden, encoder_output):
energy = self.attn(encoder_output)
return torch.sum(hidden * energy, dim=2)
def concat_score(self, hidden, encoder_output):
energy = self.attn(torch.cat((hidden.expand(encoder_output.size(0), -1, -1), encoder_output), 2)).tanh()
return torch.sum(self.v * energy, dim=2)
def concat_score2(self, hidden, encoder_output):
h = torch.cat((hidden.expand(encoder_output.size(0), -1, -1), encoder_output), 2)
h = torch.cat((h, hidden*encoder_output),2)
energy = self.attn(h).tanh()
return torch.sum(self.v * energy, dim=2)
def forward(self, hidden, encoder_outputs):
# Calculate the attention weights (energies) based on the given method
if self.method == 'general':
attn_energies = self.general_score(hidden, encoder_outputs)
elif self.method == 'concat':
attn_energies = self.concat_score(hidden, encoder_outputs)
elif self.method == 'dot':
attn_energies = self.dot_score(hidden, encoder_outputs)
elif self.method == 'concat2':
attn_energies = self.concat_score2(hidden, encoder_outputs)
# Transpose max_length and batch_size dimensions
attn_energies = attn_energies.t()
# Return the softmax normalized probability scores (with added dimension)
return F.softmax(attn_energies, dim=1).unsqueeze(1)
class LSTMModel(nn.Module):
def __init__(self, n_X_features, n_X_static_features, n_X_fr_types, n_Z_confounders,
attn_model, n_classes, obs_w,
batch_size, hidden_size,
num_layers=2, bidirectional=True, dropout = 0.2):
super().__init__()
self.hidden_size = hidden_size
self.batch_size = batch_size
self.n_X_features = n_X_features
self.n_X_static_features = n_X_static_features
self.n_classes = n_classes
self.obs_w = obs_w
self.num_layers = num_layers
self.x_emb_size = 32
self.x_static_emb_size = 16
self.z_dim = n_Z_confounders
if bidirectional:
self.num_directions = 2
else:
self.num_directions = 1
self.n_t_classes = 1
self.rnn_f = nn.GRUCell(input_size=self.x_emb_size + 1 + n_Z_confounders, hidden_size=hidden_size)
self.rnn_cf = nn.GRUCell(input_size=self.x_emb_size + 1 + n_Z_confounders, hidden_size=hidden_size)
self.attn_f = Attn(attn_model, hidden_size)
self.concat_f = nn.Linear(hidden_size * 2, hidden_size)
self.attn_cf = Attn(attn_model, hidden_size)
self.concat_cf = nn.Linear(hidden_size * 2, hidden_size)
self.x2emb = nn.Linear(n_X_features, self.x_emb_size)
self.x_static2emb = nn.Linear(n_X_static_features, self.x_static_emb_size)
# IPW
self.hidden2hidden_ipw = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(self.x_emb_size + hidden_size + self.x_static_emb_size, hidden_size),
nn.Dropout(0.3),
nn.ReLU(),
)
self.hidden2out_ipw = nn.Linear(hidden_size, self.n_t_classes, bias=False)
# Outcome
self.hidden2hidden_outcome_f = nn.Sequential(
nn.Dropout(0.5),
nn.Linear((self.x_emb_size + hidden_size) + self.x_static_emb_size + 1, hidden_size),
nn.Dropout(0.3),
nn.ReLU(),
)
self.hidden2out_outcome_f = nn.Linear(hidden_size, self.n_classes, bias=False)
self.hidden2hidden_outcome_cf = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(self.x_emb_size + hidden_size + self.x_static_emb_size + 1, hidden_size),
nn.Dropout(0.3),
nn.ReLU(),
)
self.hidden2out_outcome_cf = nn.Linear(hidden_size, self.n_classes, bias=False)
def feature_encode(self, x, x_fr):
f_hx = torch.randn(x.size(0), self.hidden_size)
cf_hx = torch.randn(x.size(0), self.hidden_size)
f_old = f_hx
cf_old = cf_hx
f_outputs = []
f_zxs = []
cf_outputs = []
cf_zxs = []
for i in range(x.size(1)):
x_emb = self.x2emb(x[:, i, :])
f_zx = torch.cat((x_emb, f_old), -1)
f_zxs.append(f_zx)
cf_zx = torch.cat((x_emb, cf_old), -1)
cf_zxs.append(cf_zx)
f_inputs = torch.cat((f_zx, x_fr[:,i].unsqueeze(1)), -1)
cf_treatment = torch.where(x_fr.sum(1)==0, torch.Tensor([1]), torch.Tensor([0])).unsqueeze(1)
cf_inputs = torch.cat((cf_zx, cf_treatment), -1)
f_hx = self.rnn_f(f_inputs, f_hx)
cf_hx = self.rnn_cf(cf_inputs, cf_hx)
if i == 0:
f_concat_input = torch.cat((f_hx, f_hx), 1)
cf_concat_input = torch.cat((cf_hx, cf_hx), 1)
else:
f_attn_weights = self.attn_f(f_hx, torch.stack(f_outputs))
f_context = f_attn_weights.bmm(torch.stack(f_outputs).transpose(0, 1))
f_context = f_context.squeeze(1)
f_concat_input = torch.cat((f_hx, f_context), 1)
cf_attn_weights = self.attn_cf(cf_hx, torch.stack(cf_outputs))
cf_context = cf_attn_weights.bmm(torch.stack(cf_outputs).transpose(0, 1))
cf_context = cf_context.squeeze(1)
cf_concat_input = torch.cat((cf_hx, cf_context), 1)
f_concat_output = torch.tanh(self.concat_f(f_concat_input))
f_old = f_concat_output
cf_concat_output = torch.tanh(self.concat_cf(cf_concat_input))
cf_old = cf_concat_output
f_outputs.append(f_hx)
cf_outputs.append(cf_hx)
return f_zxs, cf_zxs
def forward(self, x, x_demo, x_fr):
f_zxs, cf_zxs = self.feature_encode(x, x_fr)
# IPW
ipw_outputs = []
x_demo_emd = self.x_static2emb(x_demo)
for i in range(len(f_zxs)):
h = torch.cat((f_zxs[i], x_demo_emd), -1)
h = self.hidden2hidden_ipw(h)
ipw_out = self.hidden2out_ipw(h)
ipw_outputs.append(ipw_out)
# Outcome
f_treatment = torch.where(x_fr.sum(1) > 0, torch.Tensor([1]), torch.Tensor([0])).unsqueeze(1)
cf_treatment = torch.where(x_fr.sum(1) > 0, torch.Tensor([0]), torch.Tensor([1])).unsqueeze(1)
# factual prediction
f_zx_maxpool = torch.max(torch.stack(f_zxs), 0)
f_hidden = torch.cat((f_zx_maxpool[0], x_demo_emd, f_treatment), -1)
f_h = self.hidden2hidden_outcome_f(f_hidden)
f_outcome_out = self.hidden2out_outcome_f(f_h)
# counterfactual prediction
cf_zx_maxpool = torch.max(torch.stack(cf_zxs), 0)
cf_hidden = torch.cat((cf_zx_maxpool[0], x_demo_emd, cf_treatment), -1)
cf_h = self.hidden2hidden_outcome_cf(cf_hidden)
cf_outcome_out = self.hidden2out_outcome_cf(cf_h)
return ipw_outputs, f_outcome_out, cf_outcome_out, f_h