-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathReadAnalyzer.hpp
121 lines (109 loc) · 4.34 KB
/
ReadAnalyzer.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
/**
* shark - Mapping-free filtering of useless RNA-Seq reads
* Copyright (C) 2019 Tamara Ceccato, Luca Denti, Yuri Pirola, Marco Previtali
*
* This file is part of shark.
*
* shark is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* shark is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with shark; see the file LICENSE. If not, see
* <https://www.gnu.org/licenses/>.
**/
#ifndef READANALYZER_HPP
#define READANALYZER_HPP
#include "bloomfilter.h"
#include "kmer_utils.hpp"
#include <vector>
#include <array>
using namespace std;
class ReadAnalyzer {
public:
typedef vector<assoc_t> output_t;
ReadAnalyzer(BF *_bf, const vector<string>& _legend_ID, uint _k, double _c, bool _only_single = false) :
bf(_bf), legend_ID(_legend_ID), k(_k), c(_c), only_single(_only_single) {}
void operator()(const vector<elem_t>& reads, output_t& associations) const {
vector<int> genes_idx;
typedef pair<pair<unsigned int, unsigned int>, unsigned int> gene_cov_t;
map<int, gene_cov_t> classification_id;
for(const auto & p : reads) {
classification_id.clear();
const string& read_seq = p.first;
unsigned int len = 0;
for (unsigned int pos = 0; pos < read_seq.size(); ++pos) {
len += to_int[read_seq[pos]] > 0 ? 1 : 0;
}
if(len >= k) {
int pos = 0;
uint64_t kmer = build_kmer(read_seq, pos, k);
if(kmer == (uint64_t)-1) continue;
uint64_t rckmer = revcompl(kmer, k);
auto id_kmer = bf->get_index(min(kmer, rckmer));
while (id_kmer.first <= id_kmer.second) {
auto& gene_cov = classification_id[*(id_kmer.first)];
gene_cov.first.first += min(k, pos - gene_cov.second);
gene_cov.first.second = 1;
gene_cov.second = pos - 1;
++id_kmer.first;
}
for (; pos < (int)read_seq.size(); ++pos) {
uint8_t new_char = to_int[read_seq[pos]];
if(new_char == 0) { // Found a char different from A, C, G, T
++pos; // we skip this character then we build a new kmer
kmer = build_kmer(read_seq, pos, k);
if(kmer == (uint64_t)-1) break;
rckmer = revcompl(kmer, k);
--pos; // p must point to the ending position of the kmer, it will be incremented by the for
} else {
--new_char; // A is 1 but it should be 0
kmer = lsappend(kmer, new_char, k);
rckmer = rsprepend(rckmer, reverse_char(new_char), k);
}
id_kmer = bf->get_index(min(kmer, rckmer));
// cerr << "POS: " << pos << endl;
while (id_kmer.first <= id_kmer.second) {
auto& gene_cov = classification_id[*(id_kmer.first)];
gene_cov.first.first += min(k, pos - gene_cov.second);
gene_cov.first.second += 1;
// cerr << "gid=" << gene_id << "\tPREV_POS=" << gene_cov.second << "\tNEW_COV=" << gene_cov.first.first << "," << gene_cov.first.second << endl;
gene_cov.second = pos;
++id_kmer.first;
}
}
}
unsigned int max = 0;
unsigned int maxk = 0;
genes_idx.clear();
for(auto it=classification_id.cbegin(); it!=classification_id.cend(); ++it) {
if(it->second.first.first == max && it->second.first.second == maxk) {
genes_idx.push_back(it->first);
} else if(it->second.first.first > max || (it->second.first.first == max && it->second.first.second > maxk)) {
genes_idx.clear();
max = it->second.first.first;
maxk = it->second.first.second;
genes_idx.push_back(it->first);
}
}
if(max >= c*len && (!only_single || genes_idx.size() == 1)) {
for(const auto idx : genes_idx) {
associations.push_back({ legend_ID[idx], std::move(get<1>(p)) });
}
}
}
}
private:
BF * const bf;
const vector<string>& legend_ID;
const uint k;
const double c;
const bool only_single;
};
#endif