-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpbot using python
130 lines (102 loc) · 2.97 KB
/
helpbot using python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import nltk
import numpy
import tflearn
import tensorflow
import pickle
import random
import json
nltk.download('punkt')
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
#loading the json data
with open("WHO.json") as file:
data = json.load(file)
#print(data["intents"])
try:
with open("data.pickle", "rb") as f:
words, l, training, output = pickle.load(f)
except:
# Extracting Data
words = []
l = []
docs_x = []
docs_y = []
# converting each pattern into list of words using nltk.word_tokenizer
for i in data["intents"]:
for p in i["patterns"]:
wrds = nltk.word_tokenize(p)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(i["tag"])
if i["tag"] not in l:
l.append(i["tag"])
# Word Stemming
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words)))
l = sorted(l)
# This code will simply create a unique list of stemmed
# words to use in the next step of our data preprocessing
training = []
output = []
out_empty = [0 for _ in range(len(l))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[l.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
# Finally we will convert our training data and output to numpy arrays
training = numpy.array(training)
output = numpy.array(output)
with open("data.pickle", "wb") as f:
pickle.dump((words, l, training, output), f)
# Developing a Model
tensorflow.reset_default_graph()
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# remove comment to not train model after you satisfied with the accuracy
model = tflearn.DNN(net)
"""try:
model.load("model.tflearn")
except:"""
# Training & Saving the Model
model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
model.save("model.tflearn")
# making predictions
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return numpy.array(bag)
def chat():
print("""Start talking with the bot and ask your
queries about Corona-virus(type quit to stop)!""")
while True:
inp = input("You: ")
if inp.lower() == "quit":
break
results = model.predict([bag_of_words(inp, words)])[0]
results_index = numpy.argmax(results)
#print(results_index)
tag = l[results_index]
if results[results_index] > 0.7:
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
print(random.choice(responses))
else:
print("I am sorry but I can't understand")
chat()