-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
45 lines (36 loc) · 2.58 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include "driver.hpp"
/**
* Implements the driver for the Neural Network.
*
* @param[in] argc number of user arguments
* @param[in] argv vector of user arguments
*
* @return 0, if the executable was terminated normally
*
* @note For the driver to work properly, adjust the project settings found at the `Common.h` file.
* One such adjustment is to define the filepaths of the training and the evaluation subsets.
* Another strongly recommended change is the number of threads requested by the OS. This number
* is recommended to be equal to the number of the hosts's Logical Processors. This will very
* possibly optimize execution time and therefore increase performance.
*/
int main(int argc, char* argv[])
{
int cli_rows, cli_cols, cursor_row, cursor_col;
double start, end;
std::vector<int> vec;
nn fcn; /// Declares the image of the neural network
dataset TRAIN(MNIST_CLASSES, MNIST_TRAIN); /// Declares training data subset
dataset TEST(MNIST_CLASSES, MNIST_TEST); /// Declares evaluation data subset
parse_arguments(argc, argv, vec); /// Parses user arguments
start = omp_get_wtime(); /// Initializes benchmark
TRAIN.read_csv(TRAINING_DATA_FILEPATH, 0, MNIST_MAX_VAL); /// Initializes training data subset
TEST.read_csv(EVALUATION_DATA_FILEPATH, 1, MNIST_MAX_VAL); /// Initializes evaluation data subset
fcn.compile(vec, -1.0, 1.0); /// Initializes the neural network's image
fcn.summary(); /// Prints model structure
fcn.fit(TRAIN); /// Trains the model
fcn.evaluate(TEST); /// Evaluates the model
fcn.export_weights("mnist-fcn");
end = omp_get_wtime(); /// Terminates the benchmark
std::cout << "\n\nBenchmark results: " << end - start << " seconds\n"; /// Prints benchmark results
return(0);
}