-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_models.py
85 lines (67 loc) · 3.25 KB
/
train_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/usr/bin/env python3.10
# -*- coding: utf-8 -*-
"""Fine-tuning of the VGG16 network on the UC Merced or EuroSAT datasets."""
# -- File info -- #
__author__ = 'Andrzej S. Kucik'
__copyright__ = 'European Space Agency'
__contact__ = 'andrzej.kucik@esa.int'
__version__ = '0.4.0'
__date__ = '2022-01-28'
# -- Built-in modules -- #
import sys
# -- Third-party modules -- #
import tensorflow as tf
# -- Proprietary modules -- #
from argument_parser import parse_arguments
from create_models import create_vgg16_model
from dataloaders import AUGMENTATION_PARAMETERS, load_data
from utils import colour_str
if __name__ == '__main__':
# Get the arguments
args = parse_arguments(arguments=sys.argv[1:])
# Set the seed for reproducibility
tf.random.set_seed(seed=args['seed'])
# Strategy parameters (for multiple GPU training) #
strategy = tf.distribute.MirroredStrategy(cross_device_ops=tf.distribute.HierarchicalCopyAllReduce())
num_devices = strategy.num_replicas_in_sync
print(f"Number of devices: {colour_str(num_devices, 'purple')}")
# Global batch size
batch_size = args['batch_size'] * num_devices
# Load data
augmentation_parameters = {key: args[key] for key in AUGMENTATION_PARAMETERS.keys()}
train, val, test, _ = load_data(dataset=args['dataset'],
input_size=args['input_shape'][:-1],
augmentation_parameters=augmentation_parameters,
batch_size=batch_size)
# The model
with strategy.scope():
# - Create model
model = create_vgg16_model(input_shape=args['input_shape'],
kernel_l2=args['kernel_l2'],
bias_l1=args['bias_l1'],
num_classes=args['num_classes'],
remove_pooling=False,
use_dense_bias=False)
# -- Compile the model
model.compile(optimizer=tf.keras.optimizers.RMSprop(args['learning_rate']),
loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=tf.metrics.SparseCategoricalAccuracy())
# -- Show the summary of the model
model.summary()
# Callbacks
callbacks = [tf.keras.callbacks.TensorBoard(log_dir=f"logs/{args['model_name']}/fit", histogram_freq=1),
tf.keras.callbacks.ReduceLROnPlateau(verbose=True, patience=50),
tf.keras.callbacks.EarlyStopping(patience=100),
tf.keras.callbacks.ModelCheckpoint(filepath=args['model_path'], verbose=True, save_best_only=True)]
# Train the model
model.fit(x=train, epochs=args['epochs'], validation_data=val, callbacks=callbacks)
# Load the best weights
model.load_weights(args['model_path'])
# Evaluate the model
loss, acc = model.evaluate(x=test)
print("Best model's accuracy:", colour_str(f'{acc:.2%}', 'green'))
# Log the evaluation results to Tensorboard
summary_writer = tf.summary.create_file_writer(f"logs/{args['model_name']}/evaluate")
with summary_writer.as_default():
tf.summary.scalar('Test loss', loss, step=args['epochs'])
tf.summary.scalar('Test accuracy', acc, step=args['epochs'])