forked from KarenUllrich/Tutorial_BayesianCompressionForDL
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample.py
209 lines (176 loc) · 7.75 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Linear Bayesian Model
Karen Ullrich, Christos Louizos, Oct 2017
"""
# libraries
from __future__ import print_function
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import BayesianLayers
from compression import compute_compression_rate, compute_reduced_weights
from utils import visualize_pixel_importance, generate_gif, visualise_weights
N = 60000. # number of data points in the training set
def main():
# import data
kwargs = {'num_workers': 1, 'pin_memory': True} if FLAGS.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),lambda x: 2 * (x - 0.5),
])),
batch_size=FLAGS.batchsize, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(), lambda x: 2 * (x - 0.5),
])),
batch_size=FLAGS.batchsize, shuffle=True, **kwargs)
# for later analysis we take some sample digits
mask = 255. * (np.ones((1, 28, 28)))
examples = train_loader.sampler.data_source.train_data[0:5].numpy()
images = np.vstack([mask, examples])
# build a simple MLP
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# activation
self.relu = nn.ReLU()
# layers
self.conv1 = BayesianLayers.Conv2dGroupNJ(1, 64, 3, stride=2, clip_var=0.04, padding=1, cuda=FLAGS.cuda)
self.conv2 = BayesianLayers.Conv2dGroupNJ(64, 64, 3, stride=2, clip_var=0.04, padding=1, cuda=FLAGS.cuda)
self.fc3 = BayesianLayers.LinearGroupNJ(3136, 10, cuda=FLAGS.cuda)
# layers including kl_divergence
self.kl_list = [self.conv1, self.conv2, self.fc3]
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
try:
n,c,w,h = x.size()
x = x.view(n, c*w*h)
return self.fc3(x)
except:
import pdb
pdb.set_trace()
def get_masks(self,thresholds):
weight_masks = []
mask = None
for i, (layer, threshold) in enumerate(zip(self.kl_list, thresholds)):
# compute dropout mask
if mask is None:
log_alpha = layer.get_log_dropout_rates().cpu().data.numpy()
mask = log_alpha < threshold
else:
mask = np.copy(next_mask)
try:
log_alpha = layers[i + 1].get_log_dropout_rates().cpu().data.numpy()
next_mask = log_alpha < thresholds[i + 1]
except:
# must be the last mask
next_mask = np.ones(10)
# mask should be shape of weight in associated layer
if len(layer.weight_mu.size()) == 2:
mask_shape = (1, -1)
elif len(layer.weight_mu.size()) == 4:
mask_shape = (-1, 1, 1, 1)
weight_mask = np.ones([x for x in layer.weight_mu.size()])*mask.reshape(mask_shape)
weight_masks.append(weight_mask.astype(np.float))
return weight_masks
def kl_divergence(self):
KLD = 0
for layer in self.kl_list:
KLD += layer.kl_divergence()
return KLD
# init model
model = Net()
if FLAGS.cuda:
model.cuda()
# init optimizer
#optimizer = optim.Adam(model.parameters())
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
def clip_grads(model, clip=0.2):
for p in model.parameters():
p.grad.data.clamp_(-clip, clip)
# we optimize the variational lower bound scaled by the number of data
# points (so we can keep our intuitions about hyper-params such as the learning rate)
discrimination_loss = nn.functional.cross_entropy
def objective(output, target, kl_divergence):
discrimination_error = discrimination_loss(output, target)
variational_bound = discrimination_error + kl_divergence / N
if FLAGS.cuda:
variational_bound = variational_bound.cuda()
return variational_bound
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if FLAGS.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = objective(output, target, model.kl_divergence())
loss.backward()
clip_grads(model)
optimizer.step()
# clip the variances after each step
for layer in model.kl_list:
layer.clip_variances()
print('Epoch: {} \tTrain loss: {:.6f} \t'.format(
epoch, loss.data[0]))
def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if FLAGS.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += discrimination_loss(output, target, size_average=False).data[0]
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('Test loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
# train the model and save some visualisations on the way
for epoch in range(1, FLAGS.epochs + 1):
train(epoch)
test()
# visualizations
#weight_mus = [model.fc1.weight_mu, model.fc2.weight_mu]
#log_alphas = [model.fc1.get_log_dropout_rates(), model.fc2.get_log_dropout_rates(),
# model.fc3.get_log_dropout_rates()]
#visualise_weights(weight_mus, log_alphas, epoch=epoch)
#log_alpha = model.fc1.get_log_dropout_rates().cpu().data.numpy()
#visualize_pixel_importance(images, log_alpha=log_alpha, epoch=str(epoch))
#generate_gif(save='pixel', epochs=FLAGS.epochs)
#generate_gif(save='weight0_e', epochs=FLAGS.epochs)
#generate_gif(save='weight1_e', epochs=FLAGS.epochs)
# compute compression rate and new model accuracy
layers = [model.conv1, model.conv2, model.fc3]
thresholds = FLAGS.thresholds
#compute_compression_rate(layers, model.get_masks(thresholds))
print("Test error after with reduced bit precision:")
weights = compute_reduced_weights(layers, model.get_masks(thresholds))
for layer, weight in zip(layers, weights):
if FLAGS.cuda:
layer.post_weight_mu.data = torch.Tensor(weight).cuda()
else:
layer.post_weight_mu.data = torch.Tensor(weight)
for layer in layers: layer.deterministic = True
test()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=5)
parser.add_argument('--batchsize', type=int, default=128)
parser.add_argument('--thresholds', type=float, nargs='*', default=[-2.8, -3., -5.])
FLAGS = parser.parse_args()
FLAGS.cuda = torch.cuda.is_available() # check if we can put the net on the GPU
main()