-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathale.py
executable file
·175 lines (135 loc) · 5.6 KB
/
ale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python3
import pandas as pd
import numpy as np
import sys
import os
from sklearn.preprocessing import minmax_scale
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KDTree
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
DIR_NAME = "ale"
def ale(data, eval_function, features, means, stds, resolution=100, n_data=100, lookaround=10, suffix='', dirsuffix='', plot_range=None):
index = np.random.permutation(data.shape[0])[:n_data]
downsampled_data = data[index,:]
print(list(zip(features, list(means))))
ale_prime = np.zeros((data.shape[1], resolution))
for i, feature in enumerate(features):
minimum, maximum = data[:,i].min(), data[:,i].max()
if plot_range is not None:
if feature not in plot_range:
continue
else:
min_max_space = maximum - minimum
old_minimum = minimum
old_maximum = maximum
minimum = old_maximum-(1-plot_range[feature][0][0])*min_max_space if plot_range[feature][1][0] == "rel" else (plot_range[feature][0][0]-means[i])/stds[i]
maximum = old_minimum+plot_range[feature][0][1]*min_max_space if plot_range[feature][1][1] == "rel" else (plot_range[feature][0][1]-means[i])/stds[i]
minimum_rescaled, maximum_rescaled = minimum*stds[i]+means[i], maximum*stds[i]+means[i]
print ('Processing feature %d: %s. Min: %.3f, Max: %.3f' % (i, feature, minimum_rescaled, maximum_rescaled))
sortd = downsampled_data[np.argsort(downsampled_data[:,i]),:]
width = (maximum-minimum)/(resolution-1)
for j_index, j in enumerate(np.linspace(minimum, maximum, num=resolution)):
center = np.argmin(np.abs(sortd[:,i] - (j+width)))
dd_cpy = sortd[np.argsort(sortd[max(0,center-lookaround):(center+lookaround),i])[:lookaround],:].copy()
dd_cpy[:,i] = j+width
upper = np.mean(eval_function(dd_cpy)[:,0])
dd_cpy[:,i] = j
lower = np.mean(eval_function(dd_cpy)[:,0])
ale_prime[i,j_index] = upper - lower
ale = np.cumsum(ale_prime[i,:])
ale = ale - np.mean(ale)
rescaled = np.linspace(minimum_rescaled, maximum_rescaled, num=resolution)
os.makedirs(DIR_NAME + dirsuffix, exist_ok=True)
range_tuple = "_"+str(plot_range[feature]).replace(" ", "") if plot_range is not None and feature in plot_range else ""
print("saving to", '%s%s/%s%s%s' % (DIR_NAME, dirsuffix, feature, suffix, range_tuple))
np.save('%s%s/%s%s%s.npy' % (DIR_NAME, dirsuffix, feature, suffix, range_tuple), np.vstack((rescaled,ale)))
np.save('%s%s/%s%s%s_data.npy' % (DIR_NAME, dirsuffix, feature, suffix, range_tuple), downsampled_data[:,i]*stds[i]+means[i])
#plt.plot(rescaled, ale)
#plt.xlabel('Feature')
#plt.ylabel('ALE')
#plt.title(feature)
#plt.savefig(DIR_NAME+'/%s.pdf' % feature)
#plt.close()
#for i, feature in enumerate(features):
#print ('Processing feature %d: %s' % (i, feature))
#for j in range(resolution):
#mask = (data_perm[:,i] >= j/resolution) & (data_perm[:,i] < (j+1)/resolution)
#if np.sum(mask):
#print ("j=%d, having %d samples" % (j, np.sum(mask)))
#dd_cpy = data_perm[mask,:][:100,:].copy()
#dd_cpy[:,i] = (j+1)/resolution
#upper = np.mean(rf.predict_proba(dd_cpy)[:,0])
#dd_cpy[:,i] = j/resolution
#lower = np.mean(rf.predict_proba(dd_cpy)[:,0])
#ale_prime[i,j] = upper - lower
#ale = np.cumsum(ale_prime[i,:])
#ale = ale - np.mean(ale)
#plt.plot(np.arange(0,1,1/resolution), ale)
#plt.xlabel('Normalized feature')
#plt.ylabel('Mean probability')
#plt.title(feature)
#plt.savefig('ale/%s.pdf' % feature)
#plt.close()
#for i, feature in enumerate(features):
#print ('Processing feature %d: %s' % (i, feature))
#sortd = np.argsort(data_perm[i,:])
#indices = np.linspace(0, data_perm.shape[0], resolution+1, dtype=int).tolist()
#j = 0
#while j < len(indices) - 1:
#val = data_perm[indices[j],i]
#j += 1
#while j < len(indices)-1 and data_perm[indices[j],i] - val < 1/resolution:
#del indices[j]
#x = np.zeros(len(indices)-1)
#ale_prime = np.zeros(len(indices)-1)
#print (indices)
#for j, lower, upper in zip(range(len(indices)-1), indices[:-1], indices[1:]):
#print (lower, upper)
#dd_cpy = data_perm[sortd[lower:upper],:].copy()
#min_featval = dd_cpy[0,i]
#max_featval = dd_cpy[-1,i]
#dd_cpy[:,i] = max_featval
#max_predict = np.mean(rf.predict_proba(dd_cpy)[:,0])
#dd_cpy[:,i] = min_featval
#min_predict = np.mean(rf.predict_proba(dd_cpy)[:,0])
#ale_prime[j] = (max_predict - min_predict) / (max_featval - min_featval)
#plt.plot(x, np.cumsum(ale_prime[:]))
#plt.xlabel('Normalized feature')
#plt.ylabel('Mean probability')
#plt.title(feature)
#plt.savefig('ale/%s.pdf' % feature)
#plt.close()
if __name__=="__main__":
data = pd.read_csv(sys.argv[1]).fillna(0)
labels = data['Label'].values
#CAIA
data = data.drop(columns=[
'flowStartMilliseconds',
'sourceIPAddress',
'destinationIPAddress',
'Label',
'Attack' ])
#AGM
#data = data.drop (columns=[
#'flowStartMilliseconds',
#'sourceIPAddress',
#'mode(destinationIPAddress)',
#'mode(_tcpFlags)',
#'Label',
#'Attack' ])
features = data.columns
# TODO: downsampling ?
# TODO: one-hot encoding ?
data = minmax_scale (data)
train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size=0.1, stratify=labels)
print("Start training")
rf = RandomForestClassifier(n_estimators=100)
rf.fit (train_data, train_labels)
y = rf.predict (test_data)
print ("Accuracy:", accuracy_score(test_labels, y))
print (classification_report(test_labels, y))
print("Using ale")
ale(data, rf.predict_proba, features, means=[0]*data.shape[1], stds=[1]*data.shape[1])