-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathbuild_graph.py
262 lines (199 loc) · 7.14 KB
/
build_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import random
import numpy as np
import pickle as pkl
import scipy.sparse as sp
import sys
from tqdm import tqdm
if len(sys.argv) < 2:
sys.exit("Use: python build_graph.py <dataset>")
# settings
datasets = ['mr', 'ohsumed', 'R8', 'R52', 'TREC', 'ag_news', 'WebKB', 'SST1', 'SST2']
dataset = sys.argv[1]
if dataset not in datasets:
sys.exit("wrong dataset name")
try:
window_size = int(sys.argv[2])
except:
window_size = 3
print('using default window size = 3')
try:
weighted_graph = bool(sys.argv[3])
except:
weighted_graph = False
print('using default unweighted graph')
truncate = False # whether to truncate long document
MAX_TRUNC_LEN = 350
print('loading raw data')
# load pre-trained word embeddings
word_embeddings_dim = 300
word_embeddings = {}
with open('glove.6B.' + str(word_embeddings_dim) + 'd.txt', 'r') as f:
for line in f.readlines():
data = line.split()
word_embeddings[str(data[0])] = list(map(float,data[1:]))
# load document list
doc_name_list = []
doc_train_list = []
doc_test_list = []
with open('data/' + dataset + '.txt', 'r') as f:
for line in f.readlines():
doc_name_list.append(line.strip())
temp = line.split("\t")
if temp[1].find('test') != -1:
doc_test_list.append(line.strip())
elif temp[1].find('train') != -1:
doc_train_list.append(line.strip())
# load raw text
doc_content_list = []
with open('data/corpus/' + dataset + '.clean.txt', 'r') as f:
for line in f.readlines():
doc_content_list.append(line.strip())
# map and shuffle
train_ids = []
for train_name in doc_train_list:
train_id = doc_name_list.index(train_name)
train_ids.append(train_id)
random.shuffle(train_ids)
test_ids = []
for test_name in doc_test_list:
test_id = doc_name_list.index(test_name)
test_ids.append(test_id)
random.shuffle(test_ids)
ids = train_ids + test_ids
shuffle_doc_name_list = []
shuffle_doc_words_list = []
for i in ids:
shuffle_doc_name_list.append(doc_name_list[int(i)])
shuffle_doc_words_list.append(doc_content_list[int(i)])
# build corpus vocabulary
word_set = set()
for doc_words in shuffle_doc_words_list:
words = doc_words.split()
word_set.update(words)
vocab = list(word_set)
vocab_size = len(vocab)
word_id_map = {}
for i in range(vocab_size):
word_id_map[vocab[i]] = i
# initialize out-of-vocabulary word embeddings
oov = {}
for v in vocab:
oov[v] = np.random.uniform(-0.01, 0.01, word_embeddings_dim)
# build label list
label_set = set()
for doc_meta in shuffle_doc_name_list:
temp = doc_meta.split('\t')
label_set.add(temp[2])
label_list = list(label_set)
# select 90% training set
train_size = len(train_ids)
val_size = int(0.1 * train_size)
real_train_size = train_size - val_size
test_size = len(test_ids)
# build graph function
def build_graph(start, end):
x_adj = []
x_feature = []
y = []
doc_len_list = []
vocab_set = set()
for i in tqdm(range(start, end)):
doc_words = shuffle_doc_words_list[i].split()
if truncate:
doc_words = doc_words[:MAX_TRUNC_LEN]
doc_len = len(doc_words)
doc_vocab = list(set(doc_words))
doc_nodes = len(doc_vocab)
doc_len_list.append(doc_nodes)
vocab_set.update(doc_vocab)
doc_word_id_map = {}
for j in range(doc_nodes):
doc_word_id_map[doc_vocab[j]] = j
# sliding windows
windows = []
if doc_len <= window_size:
windows.append(doc_words)
else:
for j in range(doc_len - window_size + 1):
window = doc_words[j: j + window_size]
windows.append(window)
word_pair_count = {}
for window in windows:
for p in range(1, len(window)):
for q in range(0, p):
word_p = window[p]
word_p_id = word_id_map[word_p]
word_q = window[q]
word_q_id = word_id_map[word_q]
if word_p_id == word_q_id:
continue
word_pair_key = (word_p_id, word_q_id)
# word co-occurrences as weights
if word_pair_key in word_pair_count:
word_pair_count[word_pair_key] += 1.
else:
word_pair_count[word_pair_key] = 1.
# bi-direction
word_pair_key = (word_q_id, word_p_id)
if word_pair_key in word_pair_count:
word_pair_count[word_pair_key] += 1.
else:
word_pair_count[word_pair_key] = 1.
row = []
col = []
weight = []
features = []
for key in word_pair_count:
p = key[0]
q = key[1]
row.append(doc_word_id_map[vocab[p]])
col.append(doc_word_id_map[vocab[q]])
weight.append(word_pair_count[key] if weighted_graph else 1.)
adj = sp.csr_matrix((weight, (row, col)), shape=(doc_nodes, doc_nodes))
for k, v in sorted(doc_word_id_map.items(), key=lambda x: x[1]):
features.append(word_embeddings[k] if k in word_embeddings else oov[k])
x_adj.append(adj)
x_feature.append(features)
# one-hot labels
for i in range(start, end):
doc_meta = shuffle_doc_name_list[i]
temp = doc_meta.split('\t')
label = temp[2]
one_hot = [0 for l in range(len(label_list))]
label_index = label_list.index(label)
one_hot[label_index] = 1
y.append(one_hot)
y = np.array(y)
return x_adj, x_feature, y, doc_len_list, vocab_set
print('building graphs for training')
x_adj, x_feature, y, _, _ = build_graph(start=0, end=real_train_size)
print('building graphs for training + validation')
allx_adj, allx_feature, ally, doc_len_list_train, vocab_train = build_graph(start=0, end=train_size)
print('building graphs for test')
tx_adj, tx_feature, ty, doc_len_list_test, vocab_test = build_graph(start=train_size, end=train_size+test_size)
doc_len_list = doc_len_list_train + doc_len_list_test
# statistics
print('max_doc_length',max(doc_len_list),'min_doc_length',min(doc_len_list),
'average {:.2f}'.format(np.mean(doc_len_list)))
print('training_vocab',len(vocab_train),'test_vocab',len(vocab_test),
'intersection',len(vocab_train & vocab_test))
# dump objects
with open("data/ind.{}.x_adj".format(dataset), 'wb') as f:
pkl.dump(x_adj, f)
with open("data/ind.{}.x_embed".format(dataset), 'wb') as f:
pkl.dump(x_feature, f)
with open("data/ind.{}.y".format(dataset), 'wb') as f:
pkl.dump(y, f)
with open("data/ind.{}.tx_adj".format(dataset), 'wb') as f:
pkl.dump(tx_adj, f)
with open("data/ind.{}.tx_embed".format(dataset), 'wb') as f:
pkl.dump(tx_feature, f)
with open("data/ind.{}.ty".format(dataset), 'wb') as f:
pkl.dump(ty, f)
with open("data/ind.{}.allx_adj".format(dataset), 'wb') as f:
pkl.dump(allx_adj, f)
with open("data/ind.{}.allx_embed".format(dataset), 'wb') as f:
pkl.dump(allx_feature, f)
with open("data/ind.{}.ally".format(dataset), 'wb') as f:
pkl.dump(ally, f)