-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathtrain.py
184 lines (149 loc) · 6.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from __future__ import division
from __future__ import print_function
import time
import tensorflow as tf
from sklearn import metrics
import pickle as pkl
from utils import *
from models import GNN, MLP
# Set random seed
# seed = 123
# np.random.seed(seed)
# tf.set_random_seed(seed)
# Settings
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('dataset', 'mr', 'Dataset string.') # 'mr','ohsumed','R8','R52'
flags.DEFINE_string('model', 'gnn', 'Model string.')
flags.DEFINE_float('learning_rate', 0.005, 'Initial learning rate.')
flags.DEFINE_integer('epochs', 200, 'Number of epochs to train.')
flags.DEFINE_integer('batch_size', 4096, 'Size of batches per epoch.')
flags.DEFINE_integer('input_dim', 300, 'Dimension of input.')
flags.DEFINE_integer('hidden', 96, 'Number of units in hidden layer.') # 32, 64, 96, 128
flags.DEFINE_integer('steps', 2, 'Number of graph layers.')
flags.DEFINE_float('dropout', 0.5, 'Dropout rate (1 - keep probability).')
flags.DEFINE_float('weight_decay', 0, 'Weight for L2 loss on embedding matrix.') # 5e-4
flags.DEFINE_integer('early_stopping', -1, 'Tolerance for early stopping (# of epochs).')
flags.DEFINE_integer('max_degree', 3, 'Maximum Chebyshev polynomial degree.') # Not used
# Load data
train_adj, train_feature, train_y, val_adj, val_feature, val_y, test_adj, test_feature, test_y = load_data(FLAGS.dataset)
# Some preprocessing
print('loading training set')
train_adj, train_mask = preprocess_adj(train_adj)
train_feature = preprocess_features(train_feature)
print('loading validation set')
val_adj, val_mask = preprocess_adj(val_adj)
val_feature = preprocess_features(val_feature)
print('loading test set')
test_adj, test_mask = preprocess_adj(test_adj)
test_feature = preprocess_features(test_feature)
if FLAGS.model == 'gnn':
# support = [preprocess_adj(adj)]
# num_supports = 1
model_func = GNN
elif FLAGS.model == 'gcn_cheby': # not used
# support = chebyshev_polynomials(adj, FLAGS.max_degree)
num_supports = 1 + FLAGS.max_degree
model_func = GNN
elif FLAGS.model == 'dense': # not used
# support = [preprocess_adj(adj)]
num_supports = 1
model_func = MLP
else:
raise ValueError('Invalid argument for model: ' + str(FLAGS.model))
# Define placeholders
placeholders = {
'support': tf.placeholder(tf.float32, shape=(None, None, None)),
'features': tf.placeholder(tf.float32, shape=(None, None, FLAGS.input_dim)),
'mask': tf.placeholder(tf.float32, shape=(None, None, 1)),
'labels': tf.placeholder(tf.float32, shape=(None, train_y.shape[1])),
'dropout': tf.placeholder_with_default(0., shape=()),
'num_features_nonzero': tf.placeholder(tf.int32) # helper variable for sparse dropout
}
# label smoothing
# label_smoothing = 0.1
# num_classes = y_train.shape[1]
# y_train = (1.0 - label_smoothing) * y_train + label_smoothing / num_classes
# Create model
model = model_func(placeholders, input_dim=FLAGS.input_dim, logging=True)
# Initialize session
sess = tf.Session()
# merged = tf.summary.merge_all()
# writer = tf.summary.FileWriter('logs/', sess.graph)
# Define model evaluation function
def evaluate(features, support, mask, labels, placeholders):
t_test = time.time()
feed_dict_val = construct_feed_dict(features, support, mask, labels, placeholders)
outs_val = sess.run([model.loss, model.accuracy, model.embeddings, model.preds, model.labels], feed_dict=feed_dict_val)
return outs_val[0], outs_val[1], (time.time() - t_test), outs_val[2], outs_val[3], outs_val[4]
# Init variables
sess.run(tf.global_variables_initializer())
cost_val = []
best_val = 0
best_epoch = 0
best_acc = 0
best_cost = 0
test_doc_embeddings = None
preds = None
labels = None
print('train start...')
# Train model
for epoch in range(FLAGS.epochs):
t = time.time()
# Training step
indices = np.arange(0, len(train_y))
np.random.shuffle(indices)
train_loss, train_acc = 0, 0
for start in range(0, len(train_y), FLAGS.batch_size):
end = start + FLAGS.batch_size
idx = indices[start:end]
# Construct feed dictionary
feed_dict = construct_feed_dict(train_feature[idx], train_adj[idx], train_mask[idx], train_y[idx], placeholders)
feed_dict.update({placeholders['dropout']: FLAGS.dropout})
outs = sess.run([model.opt_op, model.loss, model.accuracy], feed_dict=feed_dict)
train_loss += outs[1]*len(idx)
train_acc += outs[2]*len(idx)
train_loss /= len(train_y)
train_acc /= len(train_y)
# Validation
val_cost, val_acc, val_duration, _, _, _ = evaluate(val_feature, val_adj, val_mask, val_y, placeholders)
cost_val.append(val_cost)
# Test
test_cost, test_acc, test_duration, embeddings, pred, labels = evaluate(test_feature, test_adj, test_mask, test_y, placeholders)
if val_acc >= best_val:
best_val = val_acc
best_epoch = epoch
best_acc = test_acc
best_cost = test_cost
test_doc_embeddings = embeddings
preds = pred
# Print results
print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(train_loss),
"train_acc=", "{:.5f}".format(train_acc), "val_loss=", "{:.5f}".format(val_cost),
"val_acc=", "{:.5f}".format(val_acc), "test_acc=", "{:.5f}".format(test_acc),
"time=", "{:.5f}".format(time.time() - t))
if FLAGS.early_stopping > 0 and epoch > FLAGS.early_stopping and cost_val[-1] > np.mean(cost_val[-(FLAGS.early_stopping+1):-1]):
print("Early stopping...")
break
print("Optimization Finished!")
# Best results
print('Best epoch:', best_epoch)
print("Test set results:", "cost=", "{:.5f}".format(best_cost),
"accuracy=", "{:.5f}".format(best_acc))
print("Test Precision, Recall and F1-Score...")
print(metrics.classification_report(labels, preds, digits=4))
print("Macro average Test Precision, Recall and F1-Score...")
print(metrics.precision_recall_fscore_support(labels, preds, average='macro'))
print("Micro average Test Precision, Recall and F1-Score...")
print(metrics.precision_recall_fscore_support(labels, preds, average='micro'))
'''
# For visualization
doc_vectors = []
for i in range(len(test_doc_embeddings)):
doc_vector = test_doc_embeddings[i]
doc_vector_str = ' '.join([str(x) for x in doc_vector])
doc_vectors.append(str(np.argmax(test_y[i])) + ' ' + doc_vector_str)
doc_embeddings_str = '\n'.join(doc_vectors)
with open('data/' + FLAGS.dataset + '_doc_vectors.txt', 'w'):
f.write(doc_embeddings_str)
'''