-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtorch_utils.py
123 lines (91 loc) · 3.6 KB
/
torch_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import cv2
import math
import torch
import random
import numpy as np
import torch.nn.functional as F
from torch.optim.lr_scheduler import LambdaLR
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def rotation(x, k):
return torch.rot90(x, k, (1, 2))
def interleave(x, size):
s = list(x.shape)
return x.reshape([-1, size] + s[1:]).transpose(0, 1).reshape([-1] + s[1:])
def de_interleave(x, size):
s = list(x.shape)
return x.reshape([size, -1] + s[1:]).transpose(0, 1).reshape([-1] + s[1:])
def resize_for_tensors(tensors, size, mode='bilinear', align_corners=False):
return F.interpolate(tensors, size, mode=mode, align_corners=align_corners)
def L1_Loss(A_tensors, B_tensors):
return torch.abs(A_tensors - B_tensors)
def L2_Loss(A_tensors, B_tensors):
return torch.pow(A_tensors - B_tensors, 2)
# ratio = 0.2, top=20%
def Online_Hard_Example_Mining(values, ratio=0.2):
b, c, h, w = values.size()
return torch.topk(values.reshape(b, -1), k=int(c * h * w * ratio), dim=-1)[0]
def shannon_entropy_loss(logits, activation=torch.sigmoid, epsilon=1e-5):
v = activation(logits)
return -torch.sum(v * torch.log(v+epsilon), dim=1).mean()
def make_cam(x, epsilon=1e-5):
# relu(x) = max(x, 0)
x = F.relu(x)
b, c, h, w = x.size()
flat_x = x.view(b, c, (h * w))
max_value = flat_x.max(axis=-1)[0].view((b, c, 1, 1))
return F.relu(x - epsilon) / (max_value + epsilon)
def one_hot_embedding(label, classes):
"""Embedding labels to one-hot form.
Args:
labels: (int) class labels.
num_classes: (int) number of classes.
Returns:
(tensor) encoded labels, sized [N, #classes].
"""
vector = np.zeros((classes), dtype = np.float32)
if len(label) > 0:
vector[label] = 1.
return vector
def calculate_parameters(model):
return sum(param.numel() for param in model.parameters())/1000000.0
def get_learning_rate_from_optimizer(optimizer):
return optimizer.param_groups[0]['lr']
def get_numpy_from_tensor(tensor):
return tensor.cpu().detach().numpy()
def load_model(model, model_path, parallel=False):
if parallel:
model.module.load_state_dict(torch.load(model_path))
else:
model.load_state_dict(torch.load(model_path))
def save_model(model, model_path, parallel=False):
if parallel:
torch.save(model.module.state_dict(), model_path)
else:
torch.save(model.state_dict(), model_path)
def transfer_model(pretrained_model, model):
pretrained_dict = pretrained_model.state_dict()
model_dict = model.state_dict()
pretrained_dict = {k:v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
def get_learning_rate(optimizer):
lr=[]
for param_group in optimizer.param_groups:
lr +=[ param_group['lr'] ]
return lr
def get_cosine_schedule_with_warmup(optimizer,
warmup_iteration,
max_iteration,
cycles=7./16.
):
def _lr_lambda(current_iteration):
if current_iteration < warmup_iteration:
return float(current_iteration) / float(max(1, warmup_iteration))
no_progress = float(current_iteration - warmup_iteration) / float(max(1, max_iteration - warmup_iteration))
return max(0., math.cos(math.pi * cycles * no_progress))
return LambdaLR(optimizer, _lr_lambda, -1)