forked from somhi/VIC20_MiST
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsdram.sv
182 lines (153 loc) · 5.86 KB
/
sdram.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
//
// sdram.v
//
// sdram controller implementation
// Copyright (c) 2018 Sorgelig
//
// Based on sdram module by Till Harbaum
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
module sdram
(
// interface to the MT48LC16M16 chip
inout reg [15:0] SDRAM_DQ, // 16 bit bidirectional data bus
output reg [12:0] SDRAM_A, // 13 bit multiplexed address bus
output reg SDRAM_DQML, // byte mask
output reg SDRAM_DQMH, // byte mask
output reg [1:0] SDRAM_BA, // two banks
output reg SDRAM_nCS, // a single chip select
output reg SDRAM_nWE, // write enable
output reg SDRAM_nRAS, // row address select
output reg SDRAM_nCAS, // columns address select
output SDRAM_CKE,
// cpu/chipset interface
input init, // init signal after FPGA config to initialize RAM
input clk, // sdram is accessed at up to 128MHz
input clkref, // reference clock to sync to
input [1:0] bank,
input [7:0] din, // data input from chipset/cpu
output [7:0] dout, // data output to chipset/cpu
input [22:0] addr, // 25 bit byte address
input oe, // cpu/chipset requests read
input we // cpu/chipset requests write
);
assign SDRAM_CKE = ~init;
// no burst configured
localparam RASCAS_DELAY = 3'd3; // tRCD=20ns -> 3 cycles@128MHz
localparam BURST_LENGTH = 3'b000; // 000=1, 001=2, 010=4, 011=8
localparam ACCESS_TYPE = 1'b0; // 0=sequential, 1=interleaved
localparam CAS_LATENCY = 3'd2; // 2/3 allowed
localparam OP_MODE = 2'b00; // only 00 (standard operation) allowed
localparam NO_WRITE_BURST = 1'b1; // 0= write burst enabled, 1=only single access write
localparam MODE = { 3'b000, NO_WRITE_BURST, OP_MODE, CAS_LATENCY, ACCESS_TYPE, BURST_LENGTH};
localparam STATE_IDLE = 3'd0; // first state in cycle
localparam STATE_START = 3'd1; // state in which a new command can be started
localparam STATE_CONT = STATE_START + RASCAS_DELAY; // 4 command can be continued
localparam STATE_LAST = 3'd7; // last state in cycle
reg [2:0] q;
reg [22:0] a;
reg wr;
reg ram_req=0;
reg [15:0] i;
// access manager
always @(posedge clk) begin
reg [22:0] old_addr;
reg old_rd, old_we, old_ref;
old_ref<=clkref;
if(q==STATE_IDLE) begin
old_rd<=oe;
old_we<=we;
ram_req <= 0;
wr <= 0;
if((~old_rd & oe) | (~old_we & we)) begin
ram_req <= 1;
wr <= we;
a <= addr;
end
end
q <= q + 3'd1;
if(old_ref ^ clkref) begin
if (clkref) q <= 0;
old_rd <= 0;
old_we <= 0;
end
end
localparam MODE_NORMAL = 2'b00;
localparam MODE_RESET = 2'b01;
localparam MODE_LDM = 2'b10;
localparam MODE_PRE = 2'b11;
// initialization
reg [1:0] mode;
reg [4:0] reset=5'h1f;
always @(posedge clk or posedge init) begin // Use async reset since init comes from the PLL's locked signal!
if(init) begin
reset <= 5'h1f;
mode <= MODE_RESET;
end else begin
if(q == STATE_LAST) begin
if(reset != 0) begin
reset <= reset - 5'd1;
if(reset == 14) mode <= MODE_PRE;
else if(reset == 3) mode <= MODE_LDM;
else mode <= MODE_RESET;
end
else mode <= MODE_NORMAL;
end
end
end
localparam CMD_INHIBIT = 4'b1111;
localparam CMD_NOP = 4'b0111;
localparam CMD_ACTIVE = 4'b0011;
localparam CMD_READ = 4'b0101;
localparam CMD_WRITE = 4'b0100;
localparam CMD_BURST_TERMINATE = 4'b0110;
localparam CMD_PRECHARGE = 4'b0010;
localparam CMD_AUTO_REFRESH = 4'b0001;
localparam CMD_LOAD_MODE = 4'b0000;
wire [7:0] ram_dout = a[0] ? i[15:8] : i[7:0];
assign dout = oe ? ram_dout : 8'hFF;
reg dqmh,dqml;
// SDRAM state machines
always @(posedge clk) begin
casex({ram_req,wr,mode,q})
{2'b1X, MODE_NORMAL, STATE_START}: {SDRAM_nCS, SDRAM_nRAS, SDRAM_nCAS, SDRAM_nWE} <= CMD_ACTIVE;
{2'b11, MODE_NORMAL, STATE_CONT }: {SDRAM_nCS, SDRAM_nRAS, SDRAM_nCAS, SDRAM_nWE} <= CMD_WRITE;
{2'b10, MODE_NORMAL, STATE_CONT }: {SDRAM_nCS, SDRAM_nRAS, SDRAM_nCAS, SDRAM_nWE} <= CMD_READ;
{2'b0X, MODE_NORMAL, STATE_START}: {SDRAM_nCS, SDRAM_nRAS, SDRAM_nCAS, SDRAM_nWE} <= CMD_AUTO_REFRESH;
// init
{2'bXX, MODE_LDM, STATE_START}: {SDRAM_nCS, SDRAM_nRAS, SDRAM_nCAS, SDRAM_nWE} <= CMD_LOAD_MODE;
{2'bXX, MODE_PRE, STATE_START}: {SDRAM_nCS, SDRAM_nRAS, SDRAM_nCAS, SDRAM_nWE} <= CMD_PRECHARGE;
default: {SDRAM_nCS, SDRAM_nRAS, SDRAM_nCAS, SDRAM_nWE} <= CMD_INHIBIT;
endcase
casex({ram_req,mode,q})
{1'b1, MODE_NORMAL, STATE_START}: SDRAM_A <= a[21:9];
{1'b1, MODE_NORMAL, STATE_CONT }: SDRAM_A <= {dqmh,dqml,2'b10, a[22], a[8:1]};
// init
{1'bX, MODE_LDM, STATE_START}: SDRAM_A <= MODE;
{1'bX, MODE_PRE, STATE_START}: SDRAM_A <= 13'b0010000000000;
default: SDRAM_A <= {dqmh,dqml,11'b00000000000};
endcase
if(q == STATE_START) begin
SDRAM_BA <= (mode == MODE_NORMAL) ? bank : 2'b00;
SDRAM_DQ <= wr ? {din, din} : 16'bZZZZZZZZZZZZZZZZ;
{SDRAM_DQMH,SDRAM_DQML} <= {~a[0] & wr,a[0] & wr};
{dqmh,dqml} <= {~a[0] & wr,a[0] & wr};
if(wr) SDRAM_DQ <= { din, din };
end
if (q == STATE_CONT+CAS_LATENCY+1) begin
if (~wr & ram_req) i <= SDRAM_DQ;
end
end
endmodule