-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathcolorize.py
executable file
·165 lines (142 loc) · 5.5 KB
/
colorize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import sys
import os
import scipy.misc as misc
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib as mpl
import numpy as np
import post_crf
def save_result(pic_id, image, final_probabilities, num_cl, save_img = True):
folder_path = os.getcwd()
pic_path = '/logs/all'
result_path = '/results'
class_names = ['background', 'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable',
'dog', 'horse', 'motorbike', 'person', 'potted-plant',
'sheep', 'sofa', 'train', 'tv/monitor', 'ambigious']
inp = image
gt = misc.imread(folder_path + pic_path + '/gt_' + str(pic_id) + '.png')
pred = misc.imread(folder_path + pic_path + '/pred_' + str(pic_id) + '.png')
res = post_crf.post_process_crf(image, final_probabilities, num_cl)
if save_img:
fig, ax = plt.subplots(2, 2)
cmap = plt.cm.jet
bounds = np.linspace(0, num_cl, num_cl + 1)
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
plt.subplot(2, 2, 1)
plt.imshow(inp)
plt.title('image')
plt.axis('off')
plt.subplot(2, 2, 2)
plt.imshow(gt, cmap=cmap, vmin=0, vmax=num_cl)
plt.title('ground truth')
plt.axis('off')
plt.subplot(2, 2, 3)
plt.imshow(pred, cmap=cmap, vmin=0, vmax=num_cl)
plt.title('prediction')
plt.axis('off')
plt.subplot(2, 2, 4)
plt.imshow(res, cmap=cmap, vmin=0, vmax=num_cl)
plt.title('prediction with CRF')
plt.axis('off')
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.8, 0.15, 0.02, 0.7])
labels = np.arange(0, num_cl, 1)
loc = labels + .5
cbar = mpl.colorbar.ColorbarBase(cbar_ax, cmap=cmap, norm=norm, spacing='proportional', ticks=bounds, boundaries=bounds, format='%1i')
cbar.set_ticks(loc)
cbar.set_ticklabels(class_names)
fig.savefig(folder_path + result_path + '/pic_' + str(pic_id) +'.png')
return single_metrics(gt, pred, num_cl)
def save_compare_results(pic_id, num_cl):
folder_path = os.getcwd()
pic_path = '/logs/all'
result_path = '/results'
class_names = ['background', 'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable',
'dog', 'horse', 'motorbike', 'person', 'potted-plant',
'sheep', 'sofa', 'train', 'tv/monitor', 'ambigious']
inp = misc.imread(folder_path + pic_path + '/inp_' + str(pic_id) + '.png')
gt = misc.imread(folder_path + pic_path + '/gt_' + str(pic_id) + '.png')
pred_32s = misc.imread(folder_path + pic_path + '/pred_' + str(pic_id) + '.png')
pred_16s = misc.imread(folder_path + pic_path + '/pred_' + str(pic_id + 1) + '.png')
pred_8s = misc.imread(folder_path + pic_path + '/pred_' + str(pic_id + 2) + '.png')
fig, ax = plt.subplots(2, 3)
cmap = plt.cm.jet
bounds = np.linspace(0, num_cl, num_cl + 1)
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
plt.subplot(2, 3, 1)
plt.imshow(inp)
plt.title('image')
plt.axis('off')
plt.subplot(2, 3, 2)
plt.imshow(gt, cmap=cmap, vmin=0, vmax=num_cl)
plt.title('ground truth')
plt.axis('off')
plt.subplot(2, 3, 3)
plt.axis('off')
plt.subplot(2, 3, 4)
plt.imshow(pred_32s, cmap=cmap, vmin=0, vmax=num_cl)
plt.title('FCN-32s')
plt.axis('off')
plt.subplot(2, 3, 5)
plt.imshow(pred_16s, cmap=cmap, vmin=0, vmax=num_cl)
plt.title('FCN-16s')
plt.axis('off')
plt.subplot(2, 3, 6)
plt.imshow(pred_8s, cmap=cmap, vmin=0, vmax=num_cl)
plt.title('FCN-8s')
plt.axis('off')
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.83, 0.15, 0.02, 0.7])
labels = np.arange(0, num_cl, 1)
loc = labels + .5
cbar = mpl.colorbar.ColorbarBase(cbar_ax, cmap=cmap, norm=norm, spacing='proportional', ticks=bounds, boundaries=bounds, format='%1i')
cbar.set_ticks(loc)
cbar.set_ticklabels(class_names)
fig.savefig(folder_path + result_path + '/pic_' + str(pic_id) +'.png')
def single_metrics(gt, pred, num_cl):
t_px = np.zeros(num_cl)
n_px = np.zeros(num_cl)
n1_px = np.zeros(num_cl)
px_class = np.unique(gt)
error = np.subtract(gt, pred)
for i in px_class:
t_px[i] += (np.where(gt == i)[0]).shape[0]
n_px[i] += (np.where((gt == i) & (error == 0))[0]).shape[0]
n1_px[i] += (np.where(pred == i)[0]).shape[0]
return t_px, n_px, n1_px
# if __name__ == "__main__":
# pic_start = int(sys.argv[1])
# pic_end = int(sys.argv[2])
# num_cl = 22
# t_px = np.zeros(num_cl)
# n_px = np.zeros(num_cl)
# n1_px = np.zeros(num_cl)
# for idx in range(pic_start, pic_end+1):
# tmp_t, tmp_n, tmp_n1 = save_result(str(idx), num_cl, True)
# t_px += tmp_t
# n_px += tmp_n
# n1_px += tmp_n1
# t_sum = np.sum(t_px)
# n_sum = np.sum(n_px)
# px_acc = n_sum/t_sum
# condition_1 = t_px != 0
# c_n1 = np.extract(condition_1, n_px)
# c_t1 = np.extract(condition_1, t_px)
# condition_2 = (np.subtract(np.add(t_px, n1_px), n_px)) != 0
# c_n2 = np.extract(condition_2, n_px)
# c_d2 = np.extract(condition_2, (np.subtract(np.add(t_px, n1_px), n_px)))
# mean_acc = np.sum(np.divide(c_n1, c_t1))/num_cl
# mean_IU = np.sum(np.divide(c_n2, c_d2))/num_cl
# fw_IU = np.sum(np.divide(np.extract(condition_2, np.multiply(t_px, n_px)), c_d2))/t_sum
# print("========= metrics =========")
# print("pixel accuracy: " + str(px_acc))
# print("mean accuracy: " + str(mean_acc))
# print("mean IU: " + str(mean_IU))
# print("frequency weighted IU: " + str(fw_IU))
# print("")
# if __name__ == "__main__":
# num_cl = 22
# pic_id = int(sys.argv[1])
# save_compare_results(pic_id, num_cl)