-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathoptimization.py
69 lines (56 loc) · 2.3 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import scipy
import numpy as np
def minimize_l2(A_data, A_rows, A_cols, A_shape, b, damp=1e-8, logging=False):
A = scipy.sparse.csr_matrix((A_data, (A_rows, A_cols)), shape=A_shape)
return scipy.sparse.linalg.lsmr(A, b, damp=damp)[0]
def minimize_l1(A_data, A_rows, A_cols, A_shape, b, x0=None,
tol=1e-6, irls_epsilon=1e-6, damp=1e-8,
max_iters=100, logging=False):
"""
Perform L1 minimization of ``sum(|A.dot(x) - b|)`` via iteratively
reweighted least squares.
"""
if logging:
print(('solving sparse linear system (%s x %s, %s nnz)...' % (
A_shape[0], A_shape[1], len(A_data))))
if A_shape[0] == 0 or A_shape[1] == 0 or b.shape[0] == 0:
print('Warning: empty linear system! returning 0')
return np.zeros(A_shape[1])
# construct matrix
A = scipy.sparse.csr_matrix((A_data, (A_rows, A_cols)), shape=A_shape, dtype=np.float32)
# initial solution
if x0 is not None:
x = x0
else:
x = scipy.sparse.linalg.lsmr(A, b, damp=damp)[0]
prev_x = x
prev_mean_error = float('inf')
for i in range(max_iters):
error = np.abs(A.dot(x) - b)
mean_error = np.mean(error)
if logging and i % 10 == 0:
print(('l1 optimization: (iter %s) mean_error: %s' % (i, mean_error)))
# exit conditions
delta_error = prev_mean_error - mean_error
if delta_error < 0:
if logging:
print(('l1 optimization: (iter %s) mean_error increased: %s --> %s (exit)' %
(i, prev_mean_error, mean_error)))
return prev_x
elif delta_error < tol:
if logging:
print(('l1 optimization: (iter %s) mean_error: %s, delta_error: %s < %s (exit)' %
(i, mean_error, delta_error, tol)))
return x
prev_x = x
prev_mean_error = mean_error
# solve next problem
w = np.sqrt(np.reciprocal(error + irls_epsilon))
Aw_data = A_data * w[A_rows]
Aw = scipy.sparse.csr_matrix((Aw_data, (A_rows, A_cols)), shape=A_shape)
bw = b * w
x = scipy.sparse.linalg.lsmr(Aw, bw, damp=damp)[0]
if logging:
print(('l1 optimization: did not converge within %s iterations' %
max_iters))
return x