-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathunsteady_explicit.m
83 lines (64 loc) · 1.44 KB
/
unsteady_explicit.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
clear all
close all
clc
%solving a 2D steady state heat conduction equation
%d^2(T)/dx^2 + d^2(T)/dy^2 = 0
%number of grid points
nx = 10;
ny = 10;
%creating mesh
x = linspace(0,1,nx);
y = x ;
dx = x(2) - x(1) ;
dy = dx ;
alpha = 1.4 ;
dt = 1e-4 ;
%assigning BCs
T = 300*ones(10,10);
T(1,:) = 600;
T(end,:) = 900;
T(:,1) = 400;
T(:,end) = 800;
T(1,1) = 500;
T(1,end) = 700;
T(end,1) = 650;
T(end,end) = 850;
Told = T;
%number of time steps
nt = 1400;
%calculating constants
k1 = (alpha*dt)/dx^2 ;
k2 = (alpha*dt)/dy^2 ;
%time loop
tic;
iter = 1 ;
for k = 1:nt
%space loop
for i = 2:nx-1
for j = 2:ny-1
T(i,j) = Told(i,j) + k1*(Told(i+1,j) - 2*Told(i,j) + Told(i-1,j)) + k2*(Told(i,j+1) - 2*Told(i,j) + Told(i,j-1));
end
end
%updating the velocity
Told = T;
iter = iter + 1 ;
%plotting the results
figure(1);
contourf(T,20);
colorbar;
set(gca,'yDIR','reverse');
title_text = sprintf('Transient heat conduction using explicit equation=%d',iter);
title(title_text)
xlabel('x');
ylabel('y');
pause(0.3)
end
time = toc ;
%plotting of results
figure(2);
x = [1];
y = [iter];
bar(x,y,0.1,'b');
xticklabels({'Explicit approach'});
xlabel('Transient explicit equation');
ylabel('No. of iterations');