-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMRRScore.py
141 lines (122 loc) · 5.11 KB
/
MRRScore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
###############################################################################
# Language Modeling
#
# This file complete broken sentences using the language model
#
###############################################################################
import argparse
import subprocess
from copy import deepcopy
import sys
import torch
from torch.autograd import Variable
import model
import data
import numpy as np
parser = argparse.ArgumentParser(description='PyTorch MRR score Language Model')
# Model parameters
parser.add_argument('--data', type=str, default='./data/achemenet_data_20102019',
help='location of the data corpus')
parser.add_argument('--log', type=str, default='./logs/MRRLog20102019.txt',
help='location of the log file')
parser.add_argument('--MRRLines', type=str, default='./logs/MRRLines_20102019.txt',
help='location of the log file')
parser.add_argument('--checkpoint', type=str, default='model_best.pt',
help='model checkpoint to use')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--temperature', type=float, default=1.0,
help='temperature - higher will increase diversity')
parser.add_argument('--start', action='store_true',
help='only use first part of sentence')
parser.add_argument('--remove-index', type=int,default=4, help='what index to remove')
parser.add_argument('--model', type=str, default='LSTM',
help='type of recurrent net (RNN_TANH, RNN_RELU, LSTM, GRU)')
parser.add_argument('--emsize', type=int, default=200,
help='size of word embeddings')
parser.add_argument('--nhid', type=int, default=350,
help='number of hidden units per layer')
parser.add_argument('--nlayers', type=int, default=2,
help='number of layers')
parser.add_argument('--tied', action='store_true',
help='tie the word embedding and softmax weights')
args = parser.parse_args()
# Set the random seed manually for reproducibility
torch.manual_seed(args.seed)
if torch.cuda.is_available():
device = 'cuda:0'
torch.cuda.manual_seed(args.seed)
else:
device = 'cpu'
if args.temperature < 1e-3:
parser.error("--temperature has to be greater or equal 1e-3")
# Opening the model to generate from
# Loading the data
corpus = data.Corpus(args.data)
ntokens = len(corpus.dictionary)
softmax = torch.nn.Softmax(2)
model = model.RNNModel(args.model, ntokens, args.emsize, args.nhid, args.nlayers, 0.5, args.tied)
model.load_state_dict(torch.load(args.checkpoint))
model = model.to(device)
model.eval()
scores = 0.
ranks = []
removeIdx = args.remove_index
with open(args.MRRLines, 'r') as file:
good_lines = file.readlines()
with torch.no_grad():
for line in good_lines:
hidden = model.init_hidden(1)
line = line.split()
#print(line)
# Enter all the words but the last to the model
sentence = []
for word in line:
try:
sentence.append(corpus.dictionary.word2idx[word])
except:
sentence.append((corpus.dictionary.word2idx["<UNK>"]))
print(f"Error at adding the word '{word}' to the model since its not in the dictionary"
f" (Added '<UNK>' instead)")
sentence = np.array(sentence)
word_input = torch.from_numpy(sentence[:removeIdx]).view(-1,1)
word_input.data = word_input.data.to(device)
# Current top 100 sentences to complete
top_100_sentences = []
# Getting the top 100 matches to the first word
# Getting the current output and hidden layers
output, _ = model(word_input, hidden)
output = torch.log(softmax(output))
logits = output[-1, 0, :].data.cpu().numpy()
indexs = np.argsort(-logits)
rank = np.where(indexs==sentence[removeIdx])[0][0] +1
if not args.start and rank>=100.: #recompute base on top 100
rank = -1 #if not top 100 we know we will fail
elif not args.start:
new_index = rank-1
beam = sentence.reshape(sentence.shape[0], 1).repeat(100, 1)
beam[removeIdx,:] = indexs[:100]
hidden = model.init_hidden(100)
beam = torch.from_numpy(beam)
beam = beam.to(device)
output2, _ = model(beam, hidden)
output2 = torch.log(softmax(output2))
probs = np.zeros(100)
for i in range(sentence.shape[0]-1):
for j in range(100):
probs[j] += output2[i,j,beam[i+1,j]].item()
rank =np.where(np.argsort(-probs)==new_index)[0][0] +1
if rank > 0:
scores += 1. / rank
ranks.append(rank)
#print()
with open(args.log, 'w') as log:
for rank in ranks:
log.write(str(rank))
log.write("\n")
print(f"Mean reciprocal rank: {scores}/{len(good_lines)} = {scores / len(good_lines)}")
ranks = np.array(ranks)
ranks[ranks==-1] = 2000000
print('Hit@1 = ',(ranks<=1).mean())
print('Hit@5 = ',(ranks<=5).mean())
print('Hit@10 = ',(ranks<=10).mean())