-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
280 lines (255 loc) · 13.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#-*-coding:utf-8-*-
"""
NeRF with mip ideas baseline model
"""
import os
import torch
from torch import optim
from torchvision import transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
from nerf.timer import Timer
from nerf.nerf_base import DecayLrScheduler, NeRF
from nerf.dataset import CustomDataSet, AdaptiveResize
from torchvision.utils import save_image
from nerf.nerf_helper import nan_hook, saveModel
from nerf.mip_methods import maxBlurFilter
from nerf.procedures import render_image, get_parser, render_only
from nerf.utils import fov2Focal, getSummaryWriter, validSampler, randomFromOneImage, inverseSample
from nerf.addtional import getBounds, ProposalLoss, ProposalNetwork, SoftL1Loss, LossPSNR
from torch.cuda.amp.grad_scaler import GradScaler
from torch.cuda.amp import autocast as autocast
default_chkpt_path = "./check_points/"
default_model_path = "./model/"
def main(args):
epochs = args.epochs
sample_ray_num = args.sample_ray_num
coarse_sample_pnum = args.coarse_sample_pnum
fine_sample_pnum = args.fine_sample_pnum
near_t = args.near
far_t = args.far
center_crop_iter = args.center_crop_iter
center_crop = (args.center_crop_x, args.center_crop_y)
eval_time = args.eval_time
dataset_name = args.dataset_name
load_path_mip = default_chkpt_path + args.name + "_mip.pt"
load_path_prop = default_chkpt_path + args.name + "_prop.pt"
# Bool options
del_dir = args.del_dir
use_load = args.load
debugging = args.debug
output_time = args.output_time
use_amp = (args.use_scaler and (not debugging))
img_scale = args.img_scale
scene_scale = args.scene_scale
use_white_bkg = args.white_bkg
opt_mode = args.opt_mode
use_ref_nerf = args.ref_nerf
grad_clip_val = args.grad_clip
render_depth = args.render_depth
render_normal = args.render_normal
prop_normal = args.prop_normal
actual_lr = args.lr * sample_ray_num / 512 # bigger batch -> higher lr (linearity)
train_cnt, ep_start = None, None
if use_amp:
try:
from apex import amp
except ModuleNotFoundError:
print("Nvidia APEX module is not found.")
if not os.path.exists("./output/"):
os.mkdir("./output/")
if not os.path.exists("./check_points/"):
os.mkdir("./check_points/")
if not torch.cuda.is_available():
print("CUDA not available.")
exit(-1)
# ======= instantiate model =====
# NOTE: model is recommended to have loadFromFile method
if use_ref_nerf:
from nerf.ref_model import RefNeRF, WeightedNormalLoss, BackFaceLoss
normal_loss_func = WeightedNormalLoss(True)
bf_loss_func = BackFaceLoss()
mip_net = RefNeRF(10, args.ide_level, hidden_unit = args.nerf_net_width, perturb_bottle_neck_w = args.bottle_neck_noise, use_srgb = args.use_srgb).cuda()
else:
from nerf.mip_model import MipNeRF
mip_net = MipNeRF(10, 4, hidden_unit = args.nerf_net_width).cuda()
prop_net = ProposalNetwork(10, hidden_unit = args.prop_net_width).cuda()
if debugging:
for submodule in mip_net.modules():
submodule.register_forward_hook(nan_hook)
torch.autograd.set_detect_anomaly(True)
# ======= Loss function ==========
loss_func = torch.nn.MSELoss()
prop_loss_func = ProposalLoss().cuda()
mse2psnr = LossPSNR()
# ======= Optimizer and scheduler ========
transform_funcs = transforms.Compose([
AdaptiveResize(img_scale),
transforms.ToTensor(),
])
trainset = CustomDataSet(f"../{dataset_name}/", transform_funcs,
scene_scale, True, use_alpha = False, white_bkg = use_white_bkg)
testset = CustomDataSet(f"../{dataset_name}/", transform_funcs,
scene_scale, False, use_alpha = False, white_bkg = use_white_bkg)
cam_fov_train, train_cam_tf = trainset.getCameraParam()
r_c = trainset.r_c()
train_cam_tf = train_cam_tf.cuda()
del train_cam_tf
train_loader = DataLoader(trainset, 1, shuffle = True, num_workers = 4)
cam_fov_test, _ = testset.getCameraParam()
train_focal = fov2Focal(cam_fov_train, r_c)
test_focal = fov2Focal(cam_fov_test, r_c)
print("Training focal: (%f, %f), image size: (w: %d, h: %d)"%(train_focal[0], train_focal[1], r_c[1], r_c[0]))
grad_vars = list(mip_net.parameters()) + list(prop_net.parameters())
opt = optim.Adam(params = grad_vars, lr = actual_lr, betas=(0.9, 0.999))
def grad_clip_func(parameters, grad_clip):
if grad_clip > 0.:
torch.nn.utils.clip_grad_norm_(parameters, grad_clip)
if use_amp:
if opt_mode.lower() != "native":
[mip_net, prop_net], opt = amp.initialize([mip_net, prop_net], opt, opt_level=opt_mode)
else:
scaler = GradScaler()
if use_load == True and os.path.exists(load_path_mip) and os.path.exists(load_path_prop):
train_cnt, ep_start = mip_net.loadFromFile(load_path_mip, use_amp and opt_mode != "native", opt, ["train_cnt", "epoch"])
prop_net.loadFromFile(load_path_prop, use_amp and opt_mode != "native")
else:
print("Not loading or load path '%s' / '%s' does not exist."%(load_path_mip, load_path_prop))
lr_sch = DecayLrScheduler(args.min_ratio, args.decay_rate, args.decay_step, actual_lr, args.warmup_step)
test_views = []
for i in (1, 4):
test_views.append(testset[i])
del testset
torch.cuda.empty_cache()
# ====== tensorboard summary writer ======
writer = getSummaryWriter(epochs, del_dir)
train_set_len = len(trainset)
if ep_start is None:
ep_start = 0
train_cnt = ep_start * train_set_len
test_cnt = ep_start // 20
train_timer, eval_timer, epoch_timer = Timer(5), Timer(5), Timer(3)
for ep in range(ep_start, epochs):
epoch_timer.tic()
for i, (train_img, train_tf) in enumerate(train_loader):
train_img = train_img.cuda().squeeze(0)
train_tf = train_tf.cuda().squeeze(0)
train_timer.tic()
now_crop = (center_crop if train_cnt < center_crop_iter else (1., 1.))
valid_pixels, valid_coords = randomFromOneImage(train_img, now_crop)
# sample one more t to form (coarse_sample_pnum) proposal interval
coarse_samples, coarse_lengths, rgb_targets, coarse_cam_rays = validSampler(
valid_pixels, valid_coords, train_tf, sample_ray_num, coarse_sample_pnum, train_focal, near_t, far_t, True
)
# output
def run(is_ref_model = False):
coarse_samples.requires_grad = prop_normal
density = prop_net.forward(coarse_samples)
if prop_normal == True:
coarse_grad = -RefNeRF.get_grad(density, coarse_samples)
density = F.softplus(density)
prop_weights_raw = ProposalNetwork.get_weights(density, coarse_lengths, coarse_cam_rays[:, 3:]) # (ray_num, num of proposal interval)
prop_weights = maxBlurFilter(prop_weights_raw, 0.01)
coarse_normal_loss = normal_loss = bf_loss = 0.
fine_lengths, below_idxs = inverseSample(prop_weights, coarse_lengths, fine_sample_pnum + 1, sort = True)
if is_ref_model == True:
fine_samples, fine_lengths, below_idxs, sort_ids = NeRF.coarseFineMerge(coarse_cam_rays, coarse_lengths, fine_lengths, below_idxs)
fine_pos, fine_dir = fine_samples.split((3, 3), dim = -1)
fine_pos.requires_grad = True
fine_rgbo, pred_normal = mip_net.forward(fine_pos, fine_dir)
density_grad = -RefNeRF.get_grad(fine_rgbo[..., -1], fine_pos)
fine_rgbo[..., -1] = F.softplus(fine_rgbo[..., -1] + 0.5)
fine_rendered, weights, _ = NeRF.render(fine_rgbo, fine_lengths, coarse_cam_rays[:, 3:], mip_net.density_act)
normal_loss = normal_loss_func(weights, density_grad, pred_normal)
bf_loss = bf_loss_func(weights, pred_normal, fine_dir)
if prop_normal == True:
coarse_pt_fine_grad = RefNeRF.coarse_grad_select(density_grad, sort_ids, coarse_sample_pnum)
coarse_normal_loss = normal_loss_func(prop_weights, coarse_pt_fine_grad.detach(), coarse_grad)
else:
fine_lengths = fine_lengths[..., :-1]
fine_samples = NeRF.length2pts(coarse_cam_rays, fine_lengths)
fine_rgbo = mip_net.forward(fine_samples)
fine_rendered, weights, _ = NeRF.render(fine_rgbo, fine_lengths, coarse_cam_rays[:, 3:])
weight_bounds:torch.Tensor = getBounds(prop_weights, below_idxs) # output shape: (ray_num, num of conical frustum)
opt.zero_grad()
img_loss:torch.Tensor = loss_func(fine_rendered, rgb_targets) # stop the gradient of NeRF MLP
prop_loss:torch.Tensor = prop_loss_func(weight_bounds, weights.detach()) # stop the gradient of NeRF MLP
loss:torch.Tensor = prop_loss + img_loss + 4e-4 * (normal_loss + 0.1 * coarse_normal_loss) + 0.1 * bf_loss
return loss, img_loss
if use_amp:
if opt_mode == "native":
with autocast():
loss, img_loss = run(use_ref_nerf)
scaler.scale(loss).backward()
grad_clip_func(grad_vars, grad_clip_val)
scaler.step(opt)
scaler.update()
else:
loss, img_loss = run(use_ref_nerf)
with amp.scale_loss(loss, opt) as scaled_loss:
scaled_loss.backward()
grad_clip_func(grad_vars, grad_clip_val)
opt.step()
else:
loss, img_loss = run(use_ref_nerf)
loss.backward()
grad_clip_func(grad_vars, grad_clip_val)
opt.step()
train_timer.toc()
opt, new_lr = lr_sch.update_opt_lr(train_cnt, opt)
if train_cnt % eval_time == 1:
# ========= Evaluation output ========
remaining_cnt = (epochs - ep - 1) * train_set_len + train_set_len - i
psnr = mse2psnr(img_loss)
print("Traning Epoch: %4d / %4d\t Iter %4d / %4d\ttrain loss: %.4f\tPSNR: %.3lf\tlr:%.7lf\tcenter crop:%.1lf, %.1lf\tremaining train time:%s"%(
ep, epochs, i, train_set_len, loss.item(), psnr, new_lr, now_crop[0], now_crop[1], train_timer.remaining_time(remaining_cnt)
))
writer.add_scalar('Train Loss', loss, train_cnt)
writer.add_scalar('Learning Rate', new_lr, train_cnt)
writer.add_scalar('PSNR', psnr, train_cnt)
train_cnt += 1
if ((ep % output_time == 0) or ep == epochs - 1) and ep > ep_start:
mip_net.eval()
prop_net.eval()
with torch.no_grad():
eval_timer.tic()
test_results = []
test_loss = 0.
for test_img, test_tf in test_views:
test_result = render_image(
mip_net, prop_net, test_tf.cuda(), r_c, test_focal, near_t, far_t, fine_sample_pnum,
white_bkg = use_white_bkg, render_depth = render_depth, render_normal = render_normal
)
for value in test_result.values():
test_results.append(value)
test_loss += loss_func(test_result["rgb"], test_img.cuda())
eval_timer.toc()
writer.add_scalar('Test Loss', loss, test_cnt)
print("Evaluation in epoch: %4d / %4d\t, test counter: %d test loss: %.4f\taverage time: %.4lf\tremaining eval time:%s"%(
ep, epochs, test_cnt, test_loss.item() / 2, eval_timer.get_mean_time(), eval_timer.remaining_time(epochs - ep - 1)
))
save_image(test_results, "./output/result_%03d.png"%(test_cnt), nrow = 1 + render_normal + render_depth)
# ======== Saving checkpoints ========
saveModel(mip_net, "%schkpt_%d_mip.pt"%(default_chkpt_path, train_cnt), {"train_cnt": train_cnt, "epoch": ep}, opt = opt, amp = (amp) if use_amp and opt_mode != "native" else None)
saveModel(prop_net, "%schkpt_%d_prop.pt"%(default_chkpt_path, train_cnt), opt = None, amp = (amp) if use_amp and opt_mode != "native" else None)
test_cnt += 1
mip_net.train()
prop_net.train()
epoch_timer.toc()
print("Epoch %4d / %4d completed\trunning time for this epoch: %.5lf\testimated remaining time: %s"
%(ep, epochs, epoch_timer.get_mean_time(), epoch_timer.remaining_time(epochs - ep - 1))
)
# ======== Saving the model ========
saveModel(mip_net, "%smodel_%d_mip.pth"%(default_model_path, 2), opt = opt, amp = (amp) if use_amp and opt_mode != "native" else None)
saveModel(prop_net, "%smodel_%d_prop.pth"%(default_model_path, 2), opt = None, amp = (amp) if use_amp and opt_mode != "native" else None)
writer.close()
print("Output completed.")
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args() # spherical rendering is disabled (for now)
do_render = args.do_render
opt_mode = args.opt_mode
if do_render:
render_only(args, default_model_path, opt_mode)
else:
main(args)