-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathttst.py
320 lines (265 loc) · 8.3 KB
/
ttst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import argparse
import itertools
import logging
import os
import pickle
import time
import numpy as np
EMPTY_BOARD = "000000000"
# Learning parameters
START_WEIGHT = 6
PENALTY = -1
REWARD = 3
DEFAULT_TRAINING = 5000
# User interface theme
CHARS = {"0": " ", "1": "O", "2": "X"}
logging.basicConfig(format="%(message)s")
# Command line interface
parser = argparse.ArgumentParser(
description=(
"Play tic-tac-toe against a reinforcement learning agent."
" If no brainfile is specified for a given player,"
" then that player is assumed to be a human."
)
)
parser.add_argument(
"-p1", "--player1", metavar="P1", help="brainfile for the first player"
)
parser.add_argument(
"-p2", "--player2", metavar="P2", help="brainfile for the second player"
)
parser.add_argument(
"-t1", "--train1", metavar="P1", help="brainfile to train as a first player"
)
parser.add_argument(
"-t2", "--train2", metavar="P2", help="brainfile to train as a second player"
)
parser.add_argument(
"-n",
"--iterations",
metavar="INT",
type=int,
default=DEFAULT_TRAINING,
help=f"how many matches to play during training, default is {DEFAULT_TRAINING}",
)
parser.add_argument(
"-q", "--quiet", action="store_true", help="don't print while training"
)
parser.add_argument(
"-g", "--generate", metavar="FILE", help="write an empty brainfile to FILE"
)
parser.add_argument(
"-f",
"--force",
action="store_true",
help="overwrite without asking when generating base brainfiles",
)
# Base brain generator
def brain_map():
brain_map = {}
for key in itertools.product("012", repeat=9):
key = "".join(key)
good_spots = [x == "0" for x in key]
brain_map[key] = np.ones((9,), dtype=int) * good_spots
brain_map[key] *= START_WEIGHT
return brain_map
def write_brain_map(filename, force):
if not force and os.path.isfile(filename):
print(f"Brainfile {filename} already exists")
answer = input("Overwrite? [y/N] ")
if answer != "y":
print("Quitting")
return
bmap = brain_map()
with open(filename, "wb") as f:
print(f"Saving base brain in {filename}")
pickle.dump(bmap, f)
return
# Input Output
def print_state(state):
if not logging.getLogger().isEnabledFor(logging.DEBUG):
return
print()
print(" | ".join([CHARS[state[x]] for x in [6, 7, 8]]))
print("---------")
print(" | ".join([CHARS[state[x]] for x in [3, 4, 5]]))
print("---------")
print(" | ".join([CHARS[state[x]] for x in [0, 1, 2]]))
print()
def print_tutorial():
print()
print("7 | 8 | 9 ")
print("---------")
print("4 | 5 | 6 ")
print("---------")
print("1 | 2 | 3 ")
print()
def print_message_game_start(humans):
players = []
for human in humans:
players.append("human" if human else "computer")
print(f"Playing {players[0]} against {players[1]}")
def print_message_game_end(humans, result):
name = CHARS[str(result)]
logging.debug(f"{name} wins!")
def parse_move_linear(instr):
try:
x = int(instr)
except ValueError:
raise
if x not in range(1, 10):
raise ValueError
return x - 1
def read_human_move(state):
while True:
move = input(">>> ")
try:
hmov = parse_move_linear(move)
except ValueError:
print("Invalid input, please enter number 1-9")
continue
if state[hmov] == "0":
return hmov
else:
print("Cell already taken")
continue
def load_brain(brainfile):
try:
with open(brainfile, "rb") as data:
brainmap = pickle.load(data)
except FileNotFoundError:
logging.critical(f"File {brainfile} not found")
raise
except pickle.UnpicklingError:
logging.critical(f"Malformed brainfile in {brainfile}")
raise
return brainmap
def update_brain(brain_map, moves, delta):
for state, move in moves:
# The following check should prevent death
if delta > 0 or brain_map[state][move] > 1:
brain_map[state][move] += delta
# Game handling
def game_result(state):
for i in range(3):
row = state[i * 3 : i * 3 + 3]
if row == "111":
return 1
if row == "222":
return 2
for j in range(3):
col = state[j : 7 + j : 3]
if col == "111":
return 1
if col == "222":
return 2
main_diag = state[0] + state[4] + state[8]
if main_diag == "111":
return 1
if main_diag == "222":
return 2
second_diag = state[2] + state[4] + state[6]
if second_diag == "111":
return 1
if second_diag == "222":
return 2
if "0" not in state:
assert state.count("2") == state.count("1") - 1
return 2 # game is a tie: player 2 wins
return 0
def cogitate(state, brain_map):
distribution = brain_map[state] / sum(brain_map[state])
return np.random.choice(9, 1, p=distribution)[0]
def make_human_move(player_id, state):
hmov = read_human_move(state)
assert state[hmov] == "0"
updated = state[:hmov] + player_id + state[hmov + 1 :]
return updated
def make_computer_move(player_id, brainmap, state):
cmov = cogitate(state, brainmap)
assert state[cmov] == "0"
updated = state[:cmov] + player_id + state[cmov + 1 :]
return cmov, updated
# Playing and training
def _mover_maker(player_id, human):
def mover(state, bm):
if human:
newstate = make_human_move(player_id, state)
return ([], newstate)
else:
return make_computer_move(player_id, bm, state)
return mover
def play_core(bm1, bm2, t1, t2, n):
humans = [x is None for x in [bm1, bm2]]
print_message_game_start(humans)
print_tutorial() if 1 in humans else None
ids = ["1", "2"]
bms = [bm1, bm2]
movers = []
for i in range(2):
movers.append(_mover_maker(ids[i], humans[i]))
def looper(matches, iterations):
if 1 not in humans:
return matches < iterations
else:
return matches < 1
start = time.monotonic()
matches = 0
while looper(matches, n):
state = EMPTY_BOARD
moves = [[], []]
result = 0
while result == 0:
for mover, record, bm in zip(movers, moves, bms):
update = mover(state, bm)
record.append((state, update[0]))
state = update[1]
print_state(state)
result = game_result(state)
if result != 0:
break
print_message_game_end(humans, result)
if result == 2:
update_brain(bm1, moves[0], PENALTY) if t1 else None
update_brain(bm2, moves[1], REWARD) if t2 else None
else:
assert result == 1
update_brain(bm1, moves[0], REWARD) if t1 else None
update_brain(bm2, moves[1], PENALTY) if t2 else None
matches += 1
end = time.monotonic()
if 1 not in humans and (t1 == 1 or t2 == 1):
logging.info(f"Trained {n} matches in {end - start:.3f} seconds")
return bm1, bm2
def play(p1, p2, t1, t2, n): # path path bool bool int
try:
brainmap1 = load_brain(p1) if p1 is not None else None
brainmap2 = load_brain(p2) if p2 is not None else None
except (FileNotFoundError, pickle.UnpicklingError):
raise
bm1, bm2 = play_core(brainmap1, brainmap2, t1, t2, n)
if t1:
with open(p1, "wb") as f:
logging.info("Saving brain updates for computer 1")
pickle.dump(bm1, f)
if t2:
with open(p2, "wb") as f:
logging.info("Saving brain updates for computer 2")
pickle.dump(bm2, f)
if __name__ == "__main__":
args = parser.parse_args()
if args.generate is not None:
write_brain_map(args.generate, args.force)
exit(0)
if args.quiet:
logging.getLogger().setLevel(logging.INFO)
else:
logging.getLogger().setLevel(logging.DEBUG)
p1 = args.player1 or args.train1
p2 = args.player2 or args.train2
t1 = args.train1 is not None
t2 = args.train2 is not None
try:
play(p1, p2, t1, t2, args.iterations)
except (FileNotFoundError, pickle.UnpicklingError):
exit(1)