-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSTAR_outliers_plotting_library.py
122 lines (109 loc) · 4.91 KB
/
STAR_outliers_plotting_library.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import os
import pdb
from copy import deepcopy as COPY
from matplotlib import pyplot as plt
from scipy.stats import norm
from scipy.stats import pearsonr
from scipy.stats import gaussian_kde as smooth
from scipy.stats import expon
from scipy.stats import norm
from STAR_outliers_testing_library import bin_data
def get_len_4_float(value):
str_value = str(value)
if len(str(value)) > 4:
offset = 0
if "-" in str(value)[0:4]:
offset += 1
if "." in str(value)[0:5]:
offset += 1
elif "." in str(value)[0:4]:
offset += 1
str_value = str(value)[0:(4 + offset)]
return(str_value)
def compute_overlap(W, fitted_TGH, cutoff, n_bins):
W_main = W[W <= cutoff]
Wx, Wy = bin_data(W_main, n_bins)
dx = Wx[1] - Wx[0]
lbs, ubs = (Wx - 0.5*dx).reshape(-1, 1), (Wx + 0.5*dx).reshape(-1, 1)
TGH_bins = np.logical_and(fitted_TGH >= lbs, fitted_TGH < ubs)
TGHy = np.sum(TGH_bins, axis = 1)
Wy_norm = Wy/len(W_main)
TGHy_norm = TGHy/len(fitted_TGH)
Wy_overrun = np.sum(np.max([Wy_norm - TGHy_norm, np.zeros(len(Wy))], axis = 0))
return(1 - np.sum(Wy_overrun))
def plot_highliers(plot_object, y_vec, data_dist, outliers, p50):
if len(outliers[outliers > p50]) > 0:
min_highlier = np.min(outliers[outliers > p50])
high_cutoff = np.max(data_dist[data_dist < min_highlier])
num_highliers = np.sum(outliers > p50)
label = "upper bound: " + str(num_highliers)
str_high_cutoff = get_len_4_float(high_cutoff)
label += " values > " + str_high_cutoff
plt.plot(np.repeat(high_cutoff, 2), y_vec, "k-", label = label)
else:
high_cutoff = np.max(data_dist)
str_high_cutoff = get_len_4_float(high_cutoff)
label = "no high outliers (max value: " + str_high_cutoff + ")"
plt.plot([high_cutoff], [0], "ko", label = label)
return(high_cutoff)
def plot_lowliers(plot_object, y_vec, data_dist, outliers, p50):
label = ""
if len(outliers[outliers < p50]) > 0:
max_lowlier = np.max(outliers[outliers < p50])
low_cutoff = np.min(data_dist[data_dist > max_lowlier])
num_lowliers = np.sum(outliers < p50)
label += "lower bound: " + str(num_lowliers)
str_low_cutoff = get_len_4_float(low_cutoff)
label += " values < " + str_low_cutoff
plt.plot(np.repeat(low_cutoff, 2), y_vec, "k-", label = label)
else:
low_cutoff = np.min(data_dist)
str_low_cutoff = get_len_4_float(low_cutoff)
label += "no low outliers (min value: " + str_low_cutoff + ")"
plt.plot([low_cutoff], [0], "ko", label = label)
return(low_cutoff)
def plot_x(x, x_outliers, spike_vals, name, prefix, n_bins):
label0 = "feature distribution"
vals, counts = bin_data(x, n_bins)
deltas = np.min(vals[1:] - vals[:-1])
halfmax = 0.5*(np.max(counts)/np.sum(counts))/np.min(deltas)
if len(spike_vals) > 0:
ignored_val_stubs = [get_len_4_float(val) for val in spike_vals]
label0 += " (omitted spikes: " + str(ignored_val_stubs) + ")"
if len(x_outliers) == 0:
label0 += " (no outliers)"
p50 = np.percentile(x, 50)
high_cutoff = plot_highliers(plt, halfmax*np.arange(2), x, x_outliers, p50)
low_cutoff = plot_lowliers(plt, halfmax*np.arange(2), x, x_outliers, p50)
p1, p99 = np.percentile(x, 1), np.percentile(x, 99)
delta = (np.min([p99, high_cutoff]) - np.max([p1, low_cutoff]))/4
x_lims = [low_cutoff - delta, high_cutoff + delta]
plot_condition = np.logical_and(x >= x_lims[0],
x <= x_lims[1])
plt.hist(x[plot_condition], bins = n_bins, density = True, label = label0)
plt.xlabel('feature value')
plt.ylabel('density')
plt.xlim(x_lims)
plt.title("field " + name + " outlier cutoffs")
plt.legend(loc = "upper left")
if not os.path.exists(prefix + "_outlier_plots_untransformed"):
os.mkdir(prefix + "_outlier_plots_untransformed")
plt.savefig(prefix + "_outlier_plots_untransformed/" + name + ".png")
plt.clf()
def plot_W(W, fitted_TGH, name, prefix, cutoff, n_bins):
fit = compute_overlap(W, fitted_TGH, cutoff, n_bins)
label1 = "fitted distribution (area overlap = " + get_len_4_float(fit) + ")"
label2 = "actual distribution"
plt.hist(fitted_TGH, bins = n_bins, density = True, fc=(0, 0, 1, 0.5), label = label1)
plt.hist(W, bins = n_bins, density = True, fc=(1, 0, 0, 0.5), label = label2)
outlier_label = "outlier threshold: " + get_len_4_float(cutoff) + " ("
outlier_label += get_len_4_float(100*np.sum(W > cutoff)/len(W))
outlier_label += "% exceding outlier cutoff)"
plt.plot([cutoff, cutoff], [0, 0.25], label = outlier_label)
plt.legend()
if not os.path.exists(prefix + "_outlier_plots"):
os.mkdir(prefix + "_outlier_plots")
plt.savefig(prefix + "_outlier_plots/" + name + ".png")
plt.clf()
return(fit)