-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathn-puzzle.py
626 lines (529 loc) · 23.7 KB
/
n-puzzle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
"""
- This project is made for the 'Artificial Intelligence' class or 'CSC 361'.
- The project focus on solving n-puzzle problem through the use of search methods, which is divided into tow parts:
1- uninformed search methods, that include:
i- Breadth first
ii- Depth first
iii- Uniform cost
iv- Depth limited
v- Iterative deepening
2- informed search methods, that include:
i- Greedy best-first
ii- A*
- The program should start by asking the user to enter the size of the puzzle, which should follow the recommendation:
1- For depth first (no more than 1 or 2 moves for any puzzle > 2)
2- Uninformed search method (no bigger than 3x3 puzzle)
3- And finally no puzzle bigger than 5 or 6
The reader have to note that the prior recommendations are set because of the time to solve the problem,
for example a problem of size 6 will have search space of 1.856x10^41, what ever size of the problem have little
to no chance of breaking the code but it'll have a lot of time.
- The program when it's being under use, it's divided into three main methods/functions:
1- def random_state(n), which take the size of the problem and return a random state that
is granted to be solvable.
2- def solvable(state), which take a two dimensional array that represent the state and return true if the state
is solvable and false otherwise.
3- def solve(self, strategy): which take the name of the wanted search method and solve the problem by using it,
returning a tuple (sol, g, processed_nodes, max_stored_nodes, flag, self.root.state) where:
i- sol: a list of moves (e.g. Right, Left,...) that if fallowed will solve the puzzle.
ii- g: the cost of the solution (i.e. the number of moves to reach the solution).
iii- processed_nodes: the number of nodes that has been tested using the goal function.
iv- max_stored_nodes: the maximum number of nodes stored concurrently in the frontier.
v- flag: True if it has found a solution, False otherwise.
vi- node.state: the solution state of the problem, or self.root.state: if we couldn't find the solution
to use this method you will need to generate GoalTree(self, initial_state) then use the instance of the
object to use the method.
"""
# importing needed packages
from datetime import datetime
from collections import deque
import random
import numpy as np
# import copy
""""-----------------------------------------------------------------------------------------------------"""
# heap functions:
# Push item onto heap, maintaining the heap invariant.
def heappush(heap, item):
heap.append(item)
_siftdown(heap, 0, len(heap)-1)
# Pop the smallest item off the heap, maintaining the heap invariant.
def heappop(heap):
lastelt = heap.pop() # raises appropriate IndexError if heap is empty
if heap:
returnitem = heap[0]
heap[0] = lastelt
_siftup(heap, 0)
return returnitem
return lastelt
# 'heap' is a heap at all indices >= startpos, except possibly for pos. pos
# is the index of a leaf with a possibly out-of-order value. Restore the
# heap invariant.
def _siftdown(heap, startpos, pos):
newitem = heap[pos]
# Follow the path to the root, moving parents down until finding a place
# newitem fits.
while pos > startpos:
parentpos = (pos - 1) >> 1
parent = heap[parentpos]
if newitem[1] < parent[1]:
heap[pos] = parent
pos = parentpos
continue
break
heap[pos] = newitem
def _siftup(heap, pos):
endpos = len(heap)
startpos = pos
newitem = heap[pos]
# Bubble up the smaller child until hitting a leaf.
childpos = 2*pos + 1 # leftmost child position
while childpos < endpos:
# Set childpos to index of smaller child.
rightpos = childpos + 1
if rightpos < endpos and not heap[childpos][1] < heap[rightpos][1]:
childpos = rightpos
# Move the smaller child up.
heap[pos] = heap[childpos]
pos = childpos
childpos = 2*pos + 1
# The leaf at pos is empty now. Put new item there, and bubble it up
# to its final resting place (by sifting its parents down).
heap[pos] = newitem
_siftdown(heap, startpos, pos)
""""-----------------------------------------------------------------------------------------------------"""
"""class Node is used as nodes for the Goal tree class, in addition to having the expansion function and any other
cost functions."""
class Node:
"""constructor of the Node class."""
def __init__(self, state, g, parent=None, action=None, children=None):
self.state = state
self.parent = parent
self.action = action
self.children = children
self.g = g
""""return if self.state = state, false otherwise."""
def equal(self, state):
for i in range(len(state)):
for j in range(len(state)):
if self.state[i][j] != state[i][j]:
return False
return True
"""calculate the distance between every square and its goal position measured along axes at right angles"""
def manhattan_distance(self):
distance = 0
for i in range(len(self.state)):
for j in range(len(self.state)):
if self.state[i][j] != 0:
x, y = divmod(self.state[i][j] - 1, len(self.state))
distance += abs(x - i) + abs(y - j)
return distance
"""return the estimated cost to reach the goal state."""
def get_h(self):
return self.manhattan_distance(self)
def get_f(self):
return self.get_h(self) + self.g
"""return the list of possible states after exactly one move."""
def expand(self):
x, y = self.find(self.state, 0)
""" Direc contains position values for moving the blank space in either of
the 4 directions [up,down,left,right] . """
direc = {"Left": [x, y - 1], "Right": [x, y + 1], "Up": [x - 1, y], "Down": [x + 1, y]}
childs = []
for i in direc:
child = self.move(self.state, x, y, direc[i][0], direc[i][1])
if child is not None:
child_node = Node(child, self.g + 1, self, i)
childs.append(child_node)
self.children = childs
return childs
"""move the blank space in the given direction and if the position value are out
of limits then return None """
def move(self, state, x1, y1, x2, y2):
if (0 <= x2 < len(self.state)) and (0 <= y2 < len(self.state)):
# You can also use { copy.deepcopy(state) } by importing copy library, but it's a little bit slower than
# the explicit one down there.
temp_state = self.copy(state)
temp = temp_state[x2][y2]
temp_state[x2][y2] = temp_state[x1][y1]
temp_state[x1][y1] = temp
return temp_state
else:
return None
"""specifically used to find the position of the blank space """
def find(self, state, x):
for i in range(len(self.state)):
for j in range(len(self.state)):
if state[i][j] == x:
return i, j
""" Copy function to create a similar matrix of the given node"""
def copy(self, state):
temp = []
for row in state:
temp_row = []
for element in row:
temp_row.append(element)
temp.append(temp_row)
return temp
""""-----------------------------------------------------------------------------------------------------"""
""" Goal tree is the main class of the software,
having the search methods and the closed list, in addition to other things """
class GoalTree:
# constructor for the class goal tree.
def __init__(self, initial_state):
self.root = Node(initial_state, 0)
# Goal test function.
@staticmethod
def is_goal(state):
counter = 1
last = len(state) * len(state)
for x in range(len(state)):
for y in range(len(state)):
# we check if the matrix in ascending order, but exclude the last element because it is the empty square
if counter != last:
if state[x][y] != counter:
return False
counter = counter + 1
return True
# the interactive method of the class
def solve(self, strategy):
if strategy.lower() == 'breadth first':
start = datetime.now()
sol_state, sol, g, processed_nodes, max_stored_nodes, flag = self.breadth_first()
elif strategy.lower() == 'depth first':
start = datetime.now()
sol_state, sol, g, processed_nodes, max_stored_nodes, flag = self.depth_first()
elif strategy.lower() == 'uniform cost':
start = datetime.now()
sol_state, sol, g, processed_nodes, max_stored_nodes, flag = self.uniform_cost()
elif strategy.lower() == 'depth limited':
limit = int(input('Enter a limit -> '))
start = datetime.now()
sol_state, sol, g, processed_nodes, max_stored_nodes, flag = self.depth_limited(limit)
elif strategy.lower() == 'iterative deepening':
start = datetime.now()
sol_state, sol, g, processed_nodes, max_stored_nodes, flag = self.iterative_deepening()
elif strategy.lower() == 'a*' or strategy.lower() == 'a star':
start = datetime.now()
sol_state, sol, g, processed_nodes, max_stored_nodes, flag = self.a_star()
elif strategy.lower() == 'greedy' or 'best first':
start = datetime.now()
sol_state, sol, g, processed_nodes, max_stored_nodes, flag = self.greedy()
return sol_state, sol, g, processed_nodes, max_stored_nodes, flag, start
""""-------------------------------------------------------------------------------------------"""
""" Search methods:
uninformed search methods: (breadth-first, depth-first, uniformed cost, depth limited, iterative deepening) """
# find the shallowest solution.
def breadth_first(self):
node = Node(self.root.state, 0)
self.root = node
processed_nodes = 1
max_stored_nodes = 1
dim = len(node.state) * len(node.state)
# case 1: if the initial state is the goal state
if self.is_goal(node.state):
sol = self.solution(node)
return node.state, sol, node.g, processed_nodes, max_stored_nodes, True
# case 2: searching for the goal state
frontier = deque([node])
explored = set()
while True:
# Failed outcome, (i.e. didn't find the goal state)
if len(frontier) == 0:
sol = self.solution(self.root)
# will return the root state instead of node state to indicate that we don't find the solution
return self.root.state, sol, node.g, processed_nodes, max_stored_nodes, False
stored = len(frontier)
if stored > max_stored_nodes:
max_stored_nodes = stored
# checking for the goal state
node = frontier.popleft()
if self.is_goal(node.state):
sol = self.solution(node)
return node.state, sol, node.g, processed_nodes, max_stored_nodes, True
# recording visited states.
temp = tuple(np.reshape(node.state, dim))
explored.add(temp)
children = node.expand()
for child in children:
child1 = tuple(np.reshape(child.state, dim))
if child1 not in explored:
processed_nodes += 1
frontier.append(child)
# find the deepest solution
def depth_first(self):
node = Node(self.root.state, 0)
self.root = node
processed_nodes = 1
max_stored_nodes = 1
dim = len(node.state) * len(node.state)
# case 1: if the initial state is the goal state
if self.is_goal(node.state):
sol = self.solution(node)
return node.state, sol, node.g, processed_nodes, max_stored_nodes, True
# case 2: searching for the goal state
frontier = [node]
explored = set()
while True:
# Failed outcome, (i.e. didn't find the goal state)
if len(frontier) == 0:
sol = self.solution(self.root)
# will return the root state instead of node state to indicate that we don't find the solution
return self.root.state, sol, node.g, processed_nodes, max_stored_nodes, False
stored = len(frontier)
if stored > max_stored_nodes:
max_stored_nodes = stored
# checking for the goal state
node = frontier.pop()
if self.is_goal(node.state):
sol = self.solution(node)
return node.state, sol, node.g, processed_nodes, max_stored_nodes, True
# recording visited states.
temp = tuple(np.reshape(node.state, dim))
explored.add(temp)
children = node.expand()
for child in children:
child1 = tuple(np.reshape(child.state, dim))
if child1 not in explored:
processed_nodes += 1
frontier.append(child)
def uniform_cost(self):
node = Node(self.root.state, 0)
self.root = node
processed_nodes = 1
max_stored_nodes = 1
dim = len(node.state) * len(node.state)
# case 1: if the initial state is the goal state
if self.is_goal(node.state):
sol = self.solution(node)
return node.state, sol, node.g, processed_nodes, max_stored_nodes, True
# case 2: searching for the goal state
frontier = []
heappush(frontier, (node, node.g))
explored = set()
while True:
# Failed outcome, (i.e. didn't find the goal state)
if len(frontier) == 0:
sol = self.solution(self.root)
# will return the root state instead of node state to indicate that we don't find the solution
return self.root.state, sol, node.g, processed_nodes, max_stored_nodes, False
stored = len(frontier)
if stored > max_stored_nodes:
max_stored_nodes = stored
# checking for the goal state
node = heappop(frontier)[0]
if self.is_goal(node.state):
sol = self.solution(node)
return node.state, sol, node.g, processed_nodes, max_stored_nodes, True
# recording visited states.
temp = tuple(np.reshape(node.state, dim))
explored.add(temp)
children = node.expand()
# add unexplored states to frontier
for child in children:
child1 = tuple(np.reshape(child.state, dim))
if child1 not in explored:
processed_nodes += 1
heappush(frontier, (child, child.g))
# without explored set
def depth_limited(self, limit):
node = Node(self.root.state, 0)
self.root = node
processed_nodes = 1
max_stored_nodes = 1
# case 1: if the initial state is the goal state
if self.is_goal(node.state):
sol = self.solution(node)
return node.state, sol, node.g, processed_nodes, max_stored_nodes, True
# case 2: searching for the goal state
frontier = [node]
# explored = set()
while True:
# Failed outcome, (i.e. didn't find the goal state)
if len(frontier) == 0:
sol = self.solution(self.root)
# will return the root state instead of node state to indicate that we don't find the solution
return self.root.state, sol, node.g, processed_nodes, max_stored_nodes, False
stored = len(frontier)
if stored > max_stored_nodes:
max_stored_nodes = stored
# checking for the goal state
node = frontier.pop()
if self.is_goal(node.state):
sol = self.solution(node)
return node.state, sol, node.g, processed_nodes, max_stored_nodes, True
# recording visited states.
if limit >= node.g + 1:
children = node.expand()
for child in children:
processed_nodes += 1
frontier.append(child)
def iterative_deepening(self):
level = 0
flag = False
total_processed_nodes = 0
final_max_stored_nodes = 0
while not flag:
sol_state, sol, g, processed_nodes, max_stored_nodes, flag = self.depth_limited(level)
total_processed_nodes += processed_nodes
if final_max_stored_nodes < max_stored_nodes:
final_max_stored_nodes = max_stored_nodes
level += 1
return sol_state, sol, g, total_processed_nodes, final_max_stored_nodes, flag
"""-------------------------------------------------------------------------------------------"""
"""Informed search methods: (greedy search(best-first search), A*) """
def greedy(self):
node = Node(self.root.state, 0)
self.root = node
max_stored_nodes = 1
processed_nodes = 1
dim = len(node.state) * len(node.state)
# case 1: if the initial state is the goal state
if self.is_goal(node.state):
sol = self.solution(node)
return node.state, sol, node.g, processed_nodes, max_stored_nodes, True
# case 2: searching for the goal state
frontier = []
heappush(frontier, (node, node.manhattan_distance()))
explored = set()
while True:
# Failed outcome, (i.e. didn't find the goal state)
if len(frontier) == 0:
sol = self.solution(node)
# will return the root state instead of node state to indicate that we don't find the solution
return self.root.state, sol, node.g, processed_nodes, max_stored_nodes, False
stored = len(frontier)
if stored > max_stored_nodes:
max_stored_nodes = stored
# checking for the goal state
node = heappop(frontier)[0]
if self.is_goal(node.state):
sol = self.solution(node)
return node.state, sol, node.g, processed_nodes, max_stored_nodes, True
# recording visited states.
temp = tuple(np.reshape(node.state, dim))
explored.add(temp)
children = node.expand()
# add unexplored states to frontier
for child in children:
child1 = tuple(np.reshape(child.state, dim))
if child1 not in explored:
processed_nodes += 1
heappush(frontier, (child, child.manhattan_distance()))
def a_star(self):
node = Node(self.root.state, 0)
self.root = node
max_stored_nodes = 1
processed_nodes = 1
dim = len(node.state)*len(node.state)
# case 1: if the initial state is the goal state
if self.is_goal(node.state):
sol = self.solution(node)
return node.state, sol, node.g, processed_nodes, max_stored_nodes, True
# case 2: searching for the goal state
frontier = []
heappush(frontier, (node, node.g + node.manhattan_distance()))
explored = set()
while True:
# Failed outcome, (i.e. didn't find the goal state)
if len(frontier) == 0:
sol = self.solution(self.root)
# will return the root state instead of node state to indicate that we don't find the solution
return self.root.state, sol, node.g, processed_nodes, max_stored_nodes, False
stored = len(frontier)
if stored > max_stored_nodes:
max_stored_nodes = stored
# checking for the goal state
node = heappop(frontier)[0]
if self.is_goal(node.state):
sol = self.solution(node)
return node.state, sol, node.g, processed_nodes, max_stored_nodes, True
# recording visited states.
temp = tuple(np.reshape(node.state, dim))
explored.add(temp)
children = node.expand()
# add unexplored states to frontier
for child in children:
child1 = tuple(np.reshape(child.state, dim))
if child1 not in explored:
processed_nodes += 1
heappush(frontier, (child, child.g + child.manhattan_distance()))
@staticmethod
def solution(node):
sol = []
current = node
while current.parent is not None:
sol.append(current.action)
current = current.parent
sol.reverse()
return sol
""""-----------------------------------------------------------------------------------------------------"""
# Functions.
# check if a given state is solvable or not
def solvable(state):
noi = number_of_inversion(state)
n = len(state)
rob = row_of_blank_from_bottom(state)
if n % 2 == 1 and noi % 2 == 0:
return True
elif n % 2 == 0 and ((rob % 2 == 0 and noi % 2 == 1) or (rob % 2 == 1 and noi % 2 == 0)):
return True
else:
return False
# generate random solvable state
def random_state(n):
state1 = np.array(random.sample(range(n*n), n*n))
state = np.reshape(state1, (n, n))
while not solvable(state):
state1 = np.array(random.sample(range(n * n), n * n))
state = np.reshape(state1, (n, n))
return state
"""-----------------------------------------------------------------------------------------------------"""
# Helper functions:
def number_of_inversion(state):
row = []
# turning the matrix into a raw
n = len(state)
for x in range(n):
for y in range(n):
row.append(state[x][y])
noi = 0 # number of inversion (n.o.i)
for i in range(len(row)):
for j in row[i + 1:]: # go through all elements after i
if row[i] > j != 0: # j is bigger than i and j isn't the empty element
noi = noi + 1
return noi
def row_of_blank_from_bottom(state):
rob = 0
for i in state:
if 0 in i:
return len(state) - rob
rob = rob + 1
""""-----------------------------------------------------------------------------------------------------"""
""" ------- Just for testing --------"""
""" Random state """
# dim = int(input("Enter dimension -> "))
# initial = random_state(dim)
# print("The initial random state is:")
# for row in initial:
# print(row)
""" Custom state """
initial = [[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 0],
[12, 13, 15, 14]]
""" Choosing an algorithm """
algorithm = input("Choose an algorithm [Breadth first, Depth first, Uniform cost, Depth limited, Iterative deepening, \
Greedy, A*] -> ")
gt = GoalTree(initial)
info = gt.solve(algorithm)
stop_time = datetime.now()
sol_state, sol, g, processed_nodes, max_stored_nodes, find_sol, start_time = info
print("\n---------- Output Information ----------")
print("Time taken:", stop_time-start_time)
print(f'G-value (level solution found in goal tree): {g}')
print(f'Processed nodes: {processed_nodes}')
print(f'Max stored nodes: {max_stored_nodes}')
print(f'Do we find solution: {find_sol}')
print("Solution:\n" + str(sol))
print("Solution state:")
for row in sol_state:
print(row)