-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
69 lines (56 loc) · 3.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import argparse
from models_management import *
parser = argparse.ArgumentParser(description='HCNN Experiments.')
parser.add_argument('--model', type=str, default='HCNN', help="Model to be run.")
parser.add_argument('--dataset_id', type=int, default=361277, help="Dataset to be considered.")
parser.add_argument('--seed', type=int, default=9822127, help="Seed to be used.")
args = parser.parse_args()
if __name__ == '__main__':
seed = args.seed
dm = DataManager(dataset_id=args.dataset_id, seed=seed)
X_train, X_val, X_test, y_train, y_val, y_test = dm.get_data()
if args.model == 'RandomForest':
mm = ModelsManager(model='RandomForest', seed=seed, dataset_id=args.dataset_id,
X_train=X_train, X_val=X_val, X_test=X_test,
y_train=y_train, y_val=y_val, y_test=y_test)
mm.random_forest_manager()
elif args.model == 'LogisticRegression':
mm = ModelsManager(model='LogisticRegression', seed=seed, dataset_id=args.dataset_id,
X_train=X_train, X_val=X_val, X_test=X_test,
y_train=y_train, y_val=y_val, y_test=y_test)
mm.logistic_regression_manager()
elif args.model == 'XGBoost':
mm = ModelsManager(model='XGBoost', seed=seed, dataset_id=args.dataset_id,
X_train=X_train, X_val=X_val, X_test=X_test,
y_train=y_train, y_val=y_val, y_test=y_test)
mm.xgboost_manager()
elif args.model == 'CatBoost':
mm = ModelsManager(model='CatBoost', seed=seed, dataset_id=args.dataset_id,
X_train=X_train, X_val=X_val, X_test=X_test,
y_train=y_train, y_val=y_val, y_test=y_test)
mm.cat_boost_manager()
elif args.model == 'LightGBM':
mm = ModelsManager(model='LightGBM', seed=seed, dataset_id=args.dataset_id,
X_train=X_train, X_val=X_val, X_test=X_test,
y_train=y_train, y_val=y_val, y_test=y_test)
mm.lightgbm_manager()
elif args.model == 'MLP':
mm = ModelsManager(model='MLP', seed=seed, dataset_id=args.dataset_id,
X_train=X_train, X_val=X_val, X_test=X_test,
y_train=y_train, y_val=y_val, y_test=y_test)
mm.mlp_manager()
elif args.model == 'TabularTransformer':
mm = ModelsManager(model='TabularTransformer', seed=seed, dataset_id=args.dataset_id,
X_train=X_train, X_val=X_val, X_test=X_test,
y_train=y_train, y_val=y_val, y_test=y_test)
mm.tab_pfn_manager()
elif args.model == 'TabNet':
mm = ModelsManager(model='TabNet', seed=seed, dataset_id=args.dataset_id,
X_train=X_train, X_val=X_val, X_test=X_test,
y_train=y_train, y_val=y_val, y_test=y_test)
mm.tab_net_manager()
elif args.model == 'HCNN':
mm = ModelsManager(model='HCNN', seed=seed, dataset_id=args.dataset_id,
X_train=X_train, X_val=X_val, X_test=X_test,
y_train=y_train, y_val=y_val, y_test=y_test)
mm.hcnn_manager()