forked from AngeLouCN/Min_Max_Similarity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
212 lines (168 loc) · 7.97 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import argparse
import glob
import os
import imageio
import numpy as np
import torch
import yaml
from PIL import Image
from sklearn.metrics import f1_score, mean_absolute_error
from torch.autograd import Variable
from torchvision import transforms
from data import image_loader
from utils import get_logger, create_dir
from model.pretrained_unet import preUnet
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
parser = argparse.ArgumentParser()
parser.add_argument('--batchsize', type=int, default=1, help='training batch size')
parser.add_argument('--trainsize', type=int, default=(512,288), help='training dataset size')
parser.add_argument('--dataset', type=str, default='kvasir', help='dataset name')
parser.add_argument('--threshold', type=float, default=0.5, help='threshold')
opt = parser.parse_args()
class Test(object):
def __init__(self):
self._init_configure()
self._init_logger()
self.model_1 = preUnet()
self.model_2 = preUnet()
def _init_configure(self):
with open('configs/config.yml') as fp:
self.cfg = yaml.safe_load(fp)
def _init_logger(self):
log_dir = 'logs/' + opt.dataset + '/test'
self.logger = get_logger(log_dir)
print('RUNDIR: {}'.format(log_dir))
self.save_path = log_dir
self.image_save_path_1 = log_dir + "/saved_images_1"
create_dir(self.image_save_path_1)
self.image_save_path_2 = log_dir + "/saved_images_2"
create_dir(self.image_save_path_2)
self.model_1_load_path = 'logs/' + opt.dataset + '/train/Checkpoints/Model_1.pth'
self.model_2_load_path = 'logs/' + opt.dataset + '/train/Checkpoints/Model_2.pth'
def visualize_val_input(self, var_map, i):
count = i
im = transforms.ToPILImage()(var_map.squeeze_(0).detach().cpu()).convert("RGB")
name = '{:02d}_input.png'.format(count)
imageio.imwrite(self.image_save_path_1 + "/val_" + name, im)
def visualize_gt(self, var_map, i):
count = i
for kk in range(var_map.shape[0]):
pred_edge_kk = var_map[kk, :, :, :]
pred_edge_kk = pred_edge_kk.detach().cpu().numpy().squeeze()
pred_edge_kk *= 255.0
pred_edge_kk = pred_edge_kk.astype(np.uint8)
name = '{:02d}_gt.png'.format(count)
imageio.imwrite(self.image_save_path_1 + "/val_" + name, pred_edge_kk)
imageio.imwrite(self.image_save_path_2 + "/val_" + name, pred_edge_kk)
def visualize_prediction1(self, var_map, i):
count = i
for kk in range(var_map.shape[0]):
pred_edge_kk = var_map[kk, :, :, :]
pred_edge_kk = pred_edge_kk.detach().cpu().numpy().squeeze()
pred_edge_kk *= 255.0
pred_edge_kk = pred_edge_kk.astype(np.uint8)
name = '{:02d}_pred_1.png'.format(count)
imageio.imwrite(self.image_save_path_1 + "/val_" + name, pred_edge_kk)
def visualize_prediction2(self, var_map, i):
count = i
for kk in range(var_map.shape[0]):
pred_edge_kk = var_map[kk, :, :, :]
pred_edge_kk = pred_edge_kk.detach().cpu().numpy().squeeze()
pred_edge_kk *= 255.0
pred_edge_kk = pred_edge_kk.astype(np.uint8)
name = '{:02d}_pred_2.png'.format(count)
imageio.imwrite(self.image_save_path_2 + "/val_" + name, pred_edge_kk)
def visualize_uncertainity(self, var_map, i):
count = i
for kk in range(var_map.shape[0]):
pred_edge_kk = var_map[kk, :, :, :]
pred_edge_kk = pred_edge_kk.detach().cpu().numpy().squeeze()
pred_edge_kk *= 255.0
pred_edge_kk = pred_edge_kk.astype(np.uint8)
name = '{:02d}_pred.png'.format(count)
imageio.imwrite(self.image_save_path_1 + "/uncertainity_" + name, pred_edge_kk)
def evaluate_model_1(self, image_dir):
target_list = np.array([])
output_list = np.array([])
output_pred_list = np.array([])
test_dir = image_dir
self.logger.info(test_dir)
pred_files = glob.glob(test_dir + 'val_*_pred_1.png')
gt_files = glob.glob(test_dir + 'val_*_gt.png')
for file in pred_files:
image = Image.open(file)
output = np.asarray(image)
output = output.flatten() / 255
output_pred = (output > opt.threshold)
output_list = np.concatenate((output_list, output), axis=None)
output_pred_list = np.concatenate((output_pred_list, output_pred), axis=None)
for file in gt_files:
image = Image.open(file)
target = np.asarray(image)
target = target.flatten() / 255
target = (target > opt.threshold)
target_list = np.concatenate((target_list, target), axis=None)
# F1 score
F1_score = f1_score(target_list, output_pred_list)
self.logger.info("Model 1 F1 score : {} ".format(F1_score))
# Mean Absolute Error
mae = mean_absolute_error(target_list, output_pred_list)
self.logger.info("Model 1 MAE : {} ".format(mae))
def evaluate_model_2(self, image_dir):
target_list = np.array([])
output_list = np.array([])
output_pred_list = np.array([])
test_dir = image_dir
self.logger.info(test_dir)
pred_files = glob.glob(test_dir + 'val_*_pred_2.png')
gt_files = glob.glob(test_dir + 'val_*_gt.png')
for file in pred_files:
image = Image.open(file)
output = np.asarray(image)
output = output.flatten() / 255
output_pred = (output > opt.threshold)
output_list = np.concatenate((output_list, output), axis=None)
output_pred_list = np.concatenate((output_pred_list, output_pred), axis=None)
for file in gt_files:
image = Image.open(file)
target = np.asarray(image)
target = target.flatten() / 255
target = (target > opt.threshold)
target_list = np.concatenate((target_list, target), axis=None)
# F1 score
F1_score = f1_score(target_list, output_pred_list)
self.logger.info("Model 2 F1 score : {} ".format(F1_score))
# Mean Absolute Error
mae = mean_absolute_error(target_list, output_pred_list)
self.logger.info("Model 2 MAE : {} ".format(mae))
def run(self):
# build models
self.model_1.load_state_dict(torch.load(self.model_1_load_path))
self.model_1.cuda()
self.model_2.load_state_dict(torch.load(self.model_2_load_path))
self.model_2.cuda()
image_root = './data/'+ opt.dataset +'/train/image/'
gt_root = './data/'+ opt.dataset +'/train/mask/'
val_img_root = './data/'+ opt.dataset +'/test/image/'
val_gt_root = './data/'+ opt.dataset +'/test/mask/'
_, _, _, val_loader = image_loader(image_root, gt_root,val_img_root,val_gt_root, opt.batchsize, opt.trainsize)
for i, pack in enumerate(val_loader, start=1):
with torch.no_grad():
images, gts = pack
images = Variable(images)
gts = Variable(gts)
images = images.cuda()
gts = gts.cuda()
feat_map_1 = self.model_1(images)
prediction1 = torch.sigmoid(feat_map_1)
feat_map_2 = self.model_2(images)
prediction2 = torch.sigmoid(feat_map_2)
self.visualize_val_input(images, i)
self.visualize_gt(gts, i)
self.visualize_prediction1(prediction1, i)
self.visualize_prediction2(prediction2, i)
self.evaluate_model_1('logs/kvasir/test/saved_images_1/')
self.evaluate_model_2('logs/kvasir/test/saved_images_2/')
if __name__ == '__main__':
Test_network = Test()
Test_network.run()