forked from AngeLouCN/Min_Max_Similarity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mms.py
251 lines (189 loc) · 10.2 KB
/
train_mms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# -*- coding: utf-8 -*-
"""
Created on Wed Feb 16 15:02:24 2022
@author: loua2
"""
import argparse
import os
from datetime import datetime
from distutils.dir_util import copy_tree
import torch
import yaml
from tensorboardX import SummaryWriter
from torch.autograd import Variable
from data import image_loader
from loss import loss_sup, loss_diff
from metrics import dice_coef
from utils import get_logger, create_dir
from contrastive_loss import ConLoss, contrastive_loss_sup
from model.projector import projectors, classifier
from model.pretrained_unet import preUnet
import numpy as np
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=100, help='epoch number')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--batchsize', type=int, default=1, help='training batch size')
parser.add_argument('--trainsize', type=int, default=(512,288), help='training dataset size')
parser.add_argument('--dataset', type=str, default='kvasir', help='dataset name')
parser.add_argument('--split', type=float, default=1, help='training data ratio')
parser.add_argument('--momentum', default=0.9, type=float)
parser.add_argument('--ratio', type=float, default=0.5, help='labeled data ratio')
opt = parser.parse_args()
pixel_wise_contrastive_loss_criter = ConLoss()
contrastive_loss_sup_criter = contrastive_loss_sup()
def adjust_lr(optimizer, init_lr, epoch, max_epoch):
lr_ = init_lr * (1.0 - epoch / max_epoch) ** 0.9
for param_group in optimizer.param_groups:
param_group['lr'] = lr_
class Network(object):
def __init__(self):
self.patience = 0
self.best_dice_coeff_1 = False
self.best_dice_coeff_2 = False
self.model_1 = preUnet()
self.model_2 = preUnet()
self.projector_1 = projectors()
self.projector_2 = projectors()
self.classifier_1 = classifier()
self.classifier_2 = classifier()
self.best_mIoU, self.best_dice_coeff = 0, 0
self._init_configure()
self._init_logger()
def _init_configure(self):
with open('configs/config.yml') as fp:
self.cfg = yaml.safe_load(fp)
def _init_logger(self):
log_dir = 'logs/' + opt.dataset + '/train/'
self.logger = get_logger(log_dir)
print('RUNDIR: {}'.format(log_dir))
self.save_path = log_dir
self.image_save_path_1 = log_dir + "/saved_images_1"
self.image_save_path_2 = log_dir + "/saved_images_2"
create_dir(self.image_save_path_1)
create_dir(self.image_save_path_2)
self.save_tbx_log = self.save_path + '/tbx_log'
self.writer = SummaryWriter(self.save_tbx_log)
def run(self):
print('Generator Learning Rate: {} Critic Learning Rate'.format(opt.lr))
self.model_1.cuda()
self.model_2.cuda()
params = list(self.model_1.parameters()) + list(self.model_2.parameters())
optimizer = torch.optim.Adam(params,lr=opt.lr)
image_root = './data/'+ opt.dataset +'/train/image/'
gt_root = './data/'+ opt.dataset +'/train/mask/'
val_img_root = './data/'+ opt.dataset +'/test/image/'
val_gt_root = './data/'+ opt.dataset +'/test/mask/'
self.logger.info("Split Percentage : {} Labeled Data Ratio : {}".format(opt.split, opt.ratio))
train_loader_1, train_loader_2, unlabeled_train_loader, val_loader = image_loader(image_root, gt_root,val_img_root,val_gt_root,
opt.batchsize, opt.trainsize,
opt.split, opt.ratio)
self.logger.info(
"train_loader_1 {} train_loader_2 {} unlabeled_train_loader {} val_loader {}".format(len(train_loader_1),
len(train_loader_2),
len(unlabeled_train_loader),
len(val_loader)))
print("Let's go!")
for epoch in range(1, opt.epoch):
running_loss = 0.0
running_dice_val_1 = 0.0
running_dice_val_2 = 0.0
for i, data in enumerate(zip(train_loader_1, train_loader_2, unlabeled_train_loader)):
inputs_S1, labels_S1 = data[0][0], data[0][1]
inputs_S2, labels_S2 = data[1][0], data[1][1]
inputs_U, labels_U = data[2][0], data[2][1]
inputs_S1, labels_S1 = Variable(inputs_S1), Variable(labels_S1)
inputs_S1, labels_S1 = inputs_S1.cuda(), labels_S1.cuda()
inputs_S2, labels_S2 = Variable(inputs_S2), Variable(labels_S2)
inputs_S2, labels_S2 = inputs_S2.cuda(), labels_S2.cuda()
inputs_U = Variable(inputs_U)
inputs_U = inputs_U.cuda()
optimizer.zero_grad()
# Train Model 1
prediction_1 = self.model_1(inputs_S1)
prediction_1_1 = torch.sigmoid(prediction_1)
feat_1 = self.model_1(inputs_U)
u_prediction_1 = torch.sigmoid(feat_1)
# Train Model 2
prediction_2 = self.model_2(inputs_S2)
prediction_2_2 = torch.sigmoid(prediction_2)
feat_2 = self.model_2(inputs_U)
u_prediction_2 = torch.sigmoid(feat_2)
self.projector_1.cuda()
self.projector_2.cuda()
self.classifier_1.cuda()
self.classifier_2.cuda()
feat_q = self.projector_1(feat_1)
feat_k = self.projector_2(feat_2)
feat_l_q = self.classifier_1(prediction_1)
feat_l_k = self.classifier_2(prediction_2)
Loss_sup = loss_sup(prediction_1_1, prediction_2_2, labels_S1, labels_S2)
Loss_diff = loss_diff(u_prediction_1, u_prediction_2, opt.batchsize)
Loss_contrast = pixel_wise_contrastive_loss_criter(feat_q,feat_k)
Loss_contrast_2 = contrastive_loss_sup_criter(feat_l_q,feat_l_k)
seg_loss = 0.25*Loss_sup +0.25*Loss_diff +0.25*Loss_contrast+0.25*Loss_contrast_2
seg_loss.backward()
running_loss += seg_loss.item()
optimizer.step()
adjust_lr(optimizer, opt.lr, epoch, opt.epoch)
epoch_loss = running_loss / (len(train_loader_1) + len(train_loader_2))
self.logger.info('{} Epoch [{:03d}/{:03d}], total_loss : {:.4f}'.
format(datetime.now(), epoch, opt.epoch, epoch_loss))
self.logger.info('Train loss: {}'.format(epoch_loss))
self.writer.add_scalar('Train/Loss', epoch_loss, epoch)
for i, pack in enumerate(val_loader, start=1):
with torch.no_grad():
images, gts = pack
images = Variable(images)
gts = Variable(gts)
images = images.cuda()
gts = gts.cuda()
prediction_1 = self.model_1(images)
prediction_1 = torch.sigmoid(prediction_1)
prediction_2 = self.model_2(images)
prediction_2 = torch.sigmoid(prediction_2)
dice_coe_1 = dice_coef(prediction_1, gts)
running_dice_val_1 += dice_coe_1
dice_coe_2 = dice_coef(prediction_2, gts)
running_dice_val_2 += dice_coe_2
epoch_dice_val_1 = running_dice_val_1 / len(val_loader)
self.logger.info('Validation dice coeff model 1: {}'.format(epoch_dice_val_1))
self.writer.add_scalar('Validation_1/DSC', epoch_dice_val_1, epoch)
epoch_dice_val_2 = running_dice_val_2 / len(val_loader)
self.logger.info('Validation dice coeff model 1: {}'.format(epoch_dice_val_2))
self.writer.add_scalar('Validation_1/DSC', epoch_dice_val_2, epoch)
mdice_coeff_1 = epoch_dice_val_1
mdice_coeff_2 = epoch_dice_val_2
if self.best_dice_coeff_1 < mdice_coeff_1:
self.best_dice_coeff_1 = mdice_coeff_1
self.save_best_model_1 = True
if not os.path.exists(self.image_save_path_1):
os.makedirs(self.image_save_path_1)
copy_tree(self.image_save_path_1, self.save_path + '/best_model_predictions_1')
self.patience = 0
else:
self.save_best_model_1 = False
self.patience += 1
if self.best_dice_coeff_2 < mdice_coeff_2:
self.best_dice_coeff_2 = mdice_coeff_2
self.save_best_model_2 = True
if not os.path.exists(self.image_save_path_2):
os.makedirs(self.image_save_path_2)
copy_tree(self.image_save_path_2, self.save_path + '/best_model_predictions_2')
self.patience = 0
else:
self.save_best_model_2 = False
self.patience += 1
Checkpoints_Path = self.save_path + '/Checkpoints'
if not os.path.exists(Checkpoints_Path):
os.makedirs(Checkpoints_Path)
if self.save_best_model_1:
torch.save(self.model_1.state_dict(), Checkpoints_Path + '/Model_1.pth')
if self.save_best_model_2:
torch.save(self.model_2.state_dict(), Checkpoints_Path + '/Model_2.pth')
self.logger.info(
'current best dice coef model 1 {}, model 2 {}'.format(self.best_dice_coeff_1, self.best_dice_coeff_2))
self.logger.info('current patience :{}'.format(self.patience))
if __name__ == '__main__':
train_network = Network()
train_network.run()