forked from nv-tlabs/GSCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·385 lines (315 loc) · 14.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from __future__ import absolute_import
from __future__ import division
import argparse
from functools import partial
from config import cfg, assert_and_infer_cfg
import logging
import math
import os
import sys
import torch
import numpy as np
from utils.misc import AverageMeter, prep_experiment, evaluate_eval, fast_hist
from utils.f_boundary import eval_mask_boundary
import datasets
import loss
import network
import optimizer
# Argument Parser
parser = argparse.ArgumentParser(description='GSCNN')
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--arch', type=str, default='network.gscnn.GSCNN')
parser.add_argument('--dataset', type=str, default='cityscapes')
parser.add_argument('--cv', type=int, default=0,
help='cross validation split')
parser.add_argument('--joint_edgeseg_loss', action='store_true', default=True,
help='joint loss')
parser.add_argument('--img_wt_loss', action='store_true', default=False,
help='per-image class-weighted loss')
parser.add_argument('--batch_weighting', action='store_true', default=False,
help='Batch weighting for class')
parser.add_argument('--eval_thresholds', type=str, default='0.0005,0.001875,0.00375,0.005',
help='Thresholds for boundary evaluation')
parser.add_argument('--rescale', type=float, default=1.0,
help='Rescaled LR Rate')
parser.add_argument('--repoly', type=float, default=1.5,
help='Rescaled Poly')
parser.add_argument('--edge_weight', type=float, default=1.0,
help='Edge loss weight for joint loss')
parser.add_argument('--seg_weight', type=float, default=1.0,
help='Segmentation loss weight for joint loss')
parser.add_argument('--att_weight', type=float, default=1.0,
help='Attention loss weight for joint loss')
parser.add_argument('--dual_weight', type=float, default=1.0,
help='Dual loss weight for joint loss')
parser.add_argument('--evaluate', action='store_true', default=False)
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument('--sgd', action='store_true', default=True)
parser.add_argument('--sgd_finetuned',action='store_true',default=False)
parser.add_argument('--adam', action='store_true', default=False)
parser.add_argument('--amsgrad', action='store_true', default=False)
parser.add_argument('--trunk', type=str, default='resnet101',
help='trunk model, can be: resnet101 (default), resnet50')
parser.add_argument('--max_epoch', type=int, default=175)
parser.add_argument('--start_epoch', type=int, default=0)
parser.add_argument('--color_aug', type=float,
default=0.25, help='level of color augmentation')
parser.add_argument('--rotate', type=float,
default=0, help='rotation')
parser.add_argument('--gblur', action='store_true', default=True)
parser.add_argument('--bblur', action='store_true', default=False)
parser.add_argument('--lr_schedule', type=str, default='poly',
help='name of lr schedule: poly')
parser.add_argument('--poly_exp', type=float, default=1.0,
help='polynomial LR exponent')
parser.add_argument('--bs_mult', type=int, default=1)
parser.add_argument('--bs_mult_val', type=int, default=2)
parser.add_argument('--crop_size', type=int, default=720,
help='training crop size')
parser.add_argument('--pre_size', type=int, default=None,
help='resize image shorter edge to this before augmentation')
parser.add_argument('--scale_min', type=float, default=0.5,
help='dynamically scale training images down to this size')
parser.add_argument('--scale_max', type=float, default=2.0,
help='dynamically scale training images up to this size')
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--snapshot', type=str, default=None)
parser.add_argument('--restore_optimizer', action='store_true', default=False)
parser.add_argument('--exp', type=str, default='default',
help='experiment directory name')
parser.add_argument('--tb_tag', type=str, default='',
help='add tag to tb dir')
parser.add_argument('--ckpt', type=str, default='logs/ckpt')
parser.add_argument('--tb_path', type=str, default='logs/tb')
parser.add_argument('--syncbn', action='store_true', default=True,
help='Synchronized BN')
parser.add_argument('--dump_augmentation_images', action='store_true', default=False,
help='Synchronized BN')
parser.add_argument('--test_mode', action='store_true', default=False,
help='minimum testing (1 epoch run ) to verify nothing failed')
parser.add_argument('-wb', '--wt_bound', type=float, default=1.0)
parser.add_argument('--maxSkip', type=int, default=0)
args = parser.parse_args()
args.best_record = {'epoch': -1, 'iter': 0, 'val_loss': 1e10, 'acc': 0,
'acc_cls': 0, 'mean_iu': 0, 'fwavacc': 0}
#Enable CUDNN Benchmarking optimization
torch.backends.cudnn.benchmark = True
args.world_size = 1
#Test Mode run two epochs with a few iterations of training and val
if args.test_mode:
args.max_epoch = 2
if 'WORLD_SIZE' in os.environ:
args.world_size = int(os.environ['WORLD_SIZE'])
print("Total world size: ", int(os.environ['WORLD_SIZE']))
def main():
'''
Main Function
'''
#Set up the Arguments, Tensorboard Writer, Dataloader, Loss Fn, Optimizer
assert_and_infer_cfg(args)
writer = prep_experiment(args,parser)
train_loader, val_loader, train_obj = datasets.setup_loaders(args)
criterion, criterion_val = loss.get_loss(args)
net = network.get_net(args, criterion)
optim, scheduler = optimizer.get_optimizer(args, net)
torch.cuda.empty_cache()
if args.evaluate:
# Early evaluation for benchmarking
default_eval_epoch = 1
validate(val_loader, net, criterion_val,
optim, default_eval_epoch, writer)
evaluate(val_loader, net)
return
#Main Loop
for epoch in range(args.start_epoch, args.max_epoch):
# Update EPOCH CTR
cfg.immutable(False)
cfg.EPOCH = epoch
cfg.immutable(True)
scheduler.step()
train(train_loader, net, criterion, optim, epoch, writer)
validate(val_loader, net, criterion_val,
optim, epoch, writer)
def train(train_loader, net, criterion, optimizer, curr_epoch, writer):
'''
Runs the training loop per epoch
train_loader: Data loader for train
net: thet network
criterion: loss fn
optimizer: optimizer
curr_epoch: current epoch
writer: tensorboard writer
return: val_avg for step function if required
'''
net.train()
train_main_loss = AverageMeter()
train_edge_loss = AverageMeter()
train_seg_loss = AverageMeter()
train_att_loss = AverageMeter()
train_dual_loss = AverageMeter()
curr_iter = curr_epoch * len(train_loader)
for i, data in enumerate(train_loader):
if i==0:
print('running....')
inputs, mask, edge, _img_name = data
if torch.sum(torch.isnan(inputs)) > 0:
import pdb; pdb.set_trace()
batch_pixel_size = inputs.size(0) * inputs.size(2) * inputs.size(3)
inputs, mask, edge = inputs.cuda(), mask.cuda(), edge.cuda()
if i==0:
print('forward done')
optimizer.zero_grad()
main_loss = None
loss_dict = None
if args.joint_edgeseg_loss:
loss_dict = net(inputs, gts=(mask, edge))
if args.seg_weight > 0:
log_seg_loss = loss_dict['seg_loss'].mean().clone().detach_()
train_seg_loss.update(log_seg_loss.item(), batch_pixel_size)
main_loss = loss_dict['seg_loss']
if args.edge_weight > 0:
log_edge_loss = loss_dict['edge_loss'].mean().clone().detach_()
train_edge_loss.update(log_edge_loss.item(), batch_pixel_size)
if main_loss is not None:
main_loss += loss_dict['edge_loss']
else:
main_loss = loss_dict['edge_loss']
if args.att_weight > 0:
log_att_loss = loss_dict['att_loss'].mean().clone().detach_()
train_att_loss.update(log_att_loss.item(), batch_pixel_size)
if main_loss is not None:
main_loss += loss_dict['att_loss']
else:
main_loss = loss_dict['att_loss']
if args.dual_weight > 0:
log_dual_loss = loss_dict['dual_loss'].mean().clone().detach_()
train_dual_loss.update(log_dual_loss.item(), batch_pixel_size)
if main_loss is not None:
main_loss += loss_dict['dual_loss']
else:
main_loss = loss_dict['dual_loss']
else:
main_loss = net(inputs, gts=mask)
main_loss = main_loss.mean()
log_main_loss = main_loss.clone().detach_()
train_main_loss.update(log_main_loss.item(), batch_pixel_size)
main_loss.backward()
optimizer.step()
if i==0:
print('step 1 done')
curr_iter += 1
if args.local_rank == 0:
msg = '[epoch {}], [iter {} / {}], [train main loss {:0.6f}], [seg loss {:0.6f}], [edge loss {:0.6f}], [lr {:0.6f}]'.format(
curr_epoch, i + 1, len(train_loader), train_main_loss.avg, train_seg_loss.avg, train_edge_loss.avg, optimizer.param_groups[-1]['lr'] )
logging.info(msg)
# Log tensorboard metrics for each iteration of the training phase
writer.add_scalar('training/loss', (train_main_loss.val),
curr_iter)
writer.add_scalar('training/lr', optimizer.param_groups[-1]['lr'],
curr_iter)
if args.joint_edgeseg_loss:
writer.add_scalar('training/seg_loss', (train_seg_loss.val),
curr_iter)
writer.add_scalar('training/edge_loss', (train_edge_loss.val),
curr_iter)
writer.add_scalar('training/att_loss', (train_att_loss.val),
curr_iter)
writer.add_scalar('training/dual_loss', (train_dual_loss.val),
curr_iter)
if i > 5 and args.test_mode:
return
def validate(val_loader, net, criterion, optimizer, curr_epoch, writer):
'''
Runs the validation loop after each training epoch
val_loader: Data loader for validation
net: thet network
criterion: loss fn
optimizer: optimizer
curr_epoch: current epoch
writer: tensorboard writer
return:
'''
net.eval()
val_loss = AverageMeter()
mf_score = AverageMeter()
IOU_acc = 0
dump_images = []
heatmap_images = []
for vi, data in enumerate(val_loader):
input, mask, edge, img_names = data
assert len(input.size()) == 4 and len(mask.size()) == 3
assert input.size()[2:] == mask.size()[1:]
h, w = mask.size()[1:]
batch_pixel_size = input.size(0) * input.size(2) * input.size(3)
input, mask_cuda, edge_cuda = input.cuda(), mask.cuda(), edge.cuda()
with torch.no_grad():
seg_out, edge_out = net(input) # output = (1, 19, 713, 713)
if args.joint_edgeseg_loss:
loss_dict = criterion((seg_out, edge_out), (mask_cuda, edge_cuda))
val_loss.update(sum(loss_dict.values()).item(), batch_pixel_size)
else:
val_loss.update(criterion(seg_out, mask_cuda).item(), batch_pixel_size)
# Collect data from different GPU to a single GPU since
# encoding.parallel.criterionparallel function calculates distributed loss
# functions
seg_predictions = seg_out.data.max(1)[1].cpu()
edge_predictions = edge_out.max(1)[0].cpu()
#Logging
if vi % 20 == 0:
if args.local_rank == 0:
logging.info('validating: %d / %d' % (vi + 1, len(val_loader)))
if vi > 10 and args.test_mode:
break
_edge = edge.max(1)[0]
#Image Dumps
if vi < 10:
dump_images.append([mask, seg_predictions, img_names])
heatmap_images.append([_edge, edge_predictions, img_names])
IOU_acc += fast_hist(seg_predictions.numpy().flatten(), mask.numpy().flatten(),
args.dataset_cls.num_classes)
del seg_out, edge_out, vi, data
if args.local_rank == 0:
evaluate_eval(args, net, optimizer, val_loss, mf_score, IOU_acc, dump_images, heatmap_images,
writer, curr_epoch, args.dataset_cls)
return val_loss.avg
def evaluate(val_loader, net):
'''
Runs the evaluation loop and prints F score
val_loader: Data loader for validation
net: thet network
return:
'''
net.eval()
for thresh in args.eval_thresholds.split(','):
mf_score1 = AverageMeter()
mf_pc_score1 = AverageMeter()
ap_score1 = AverageMeter()
ap_pc_score1 = AverageMeter()
Fpc = np.zeros((args.dataset_cls.num_classes))
Fc = np.zeros((args.dataset_cls.num_classes))
for vi, data in enumerate(val_loader):
input, mask, edge, img_names = data
assert len(input.size()) == 4 and len(mask.size()) == 3
assert input.size()[2:] == mask.size()[1:]
h, w = mask.size()[1:]
batch_pixel_size = input.size(0) * input.size(2) * input.size(3)
input, mask_cuda, edge_cuda = input.cuda(), mask.cuda(), edge.cuda()
with torch.no_grad():
seg_out, edge_out = net(input)
seg_predictions = seg_out.data.max(1)[1].cpu()
edge_predictions = edge_out.max(1)[0].cpu()
logging.info('evaluating: %d / %d' % (vi + 1, len(val_loader)))
_Fpc, _Fc = eval_mask_boundary(seg_predictions.numpy(), mask.numpy(), args.dataset_cls.num_classes, bound_th=float(thresh))
Fc += _Fc
Fpc += _Fpc
del seg_out, edge_out, vi, data
logging.info('Threshold: ' + thresh)
logging.info('F_Score: ' + str(np.sum(Fpc/Fc)/args.dataset_cls.num_classes))
logging.info('F_Score (Classwise): ' + str(Fpc/Fc))
if __name__ == '__main__':
main()