-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCS_BABY_BIOME_AR_GENES.R
164 lines (128 loc) · 7.73 KB
/
CS_BABY_BIOME_AR_GENES.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Title: "CS_BABY_BIOME_ANTIBIOTIC_RESISTANCE_GENES_ANALYSIS"
# Author: "Trishla Sinha"
# Date: "13/02/2023"
# Last update: "01/04/2024"
library(tidyverse)
library(lmerTest)
# Load functions
mixed_models <- function(metadata, ID, CLR_transformed_data, pheno_list) {
df <- metadata
row.names(df) <- df[,ID]
df<-merge(df, CLR_transformed_data, by='row.names')
row.names(df) <- df$Row.names
df$Row.names <- NULL
Prevalent= c(colnames(CLR_transformed_data))
#pheno_list= phenotypes
Overall_result_phenos =tibble()
for (Bug in Prevalent){
if (! Bug %in% colnames(df)){ next }
#Prevalence = sum(as.numeric(as_vector(select(df, Bug)) > 0)) / dim(df)[1]
# print (c(Bug, Prevalence))
Bug2 = paste(c("`",Bug, "`"), collapse="")
for ( pheno in pheno_list){
pheno2 = paste(c("`",pheno, "`"), collapse="")
df[is.na(df[colnames(df) == pheno]) == F, ID] -> To_keep
df_pheno = filter(df, !!sym(ID) %in% To_keep )
Model0 = as.formula(paste( c(Bug2, " ~ read_depth + DNA_concentration_ng_ul + Timepoint_numeric + (1|CS_BABY_BIOME_ID)"), collapse="" ))
lmer(Model0, df_pheno) -> resultmodel0
base_model=resultmodel0
Model2 = as.formula(paste( c(Bug2, " ~ read_depth + DNA_concentration_ng_ul + Timepoint_numeric + ",pheno2, "+ (1|CS_BABY_BIOME_ID)"), collapse="" ))
lmer(Model2, df_pheno, REML = F) -> resultmodel2
M = "Mixed"
as.data.frame(anova(resultmodel2, base_model))['resultmodel2','Pr(>Chisq)']->p_simp
as.data.frame(summary(resultmodel2)$coefficients)[grep(pheno, row.names(as.data.frame(summary(resultmodel2)$coefficients))),] -> Summ_simple
Summ_simple %>% rownames_to_column("Feature") %>% as_tibble() %>% mutate(P = p_simp, Model_choice = M, Bug =Bug, Pheno=pheno, Model="simple") -> temp_output
rbind(Overall_result_phenos, temp_output) -> Overall_result_phenos
}
}
p=as.data.frame(Overall_result_phenos)
p$FDR<-p.adjust(p$P, method = "BH")
return(p)
}
mixed_models_cor_feeding <- function(metadata, ID, CLR_transformed_data, pheno_list) {
df <- metadata
row.names(df) <- df[,ID]
df<-merge(df, CLR_transformed_data, by='row.names')
row.names(df) <- df$Row.names
df$Row.names <- NULL
Prevalent= c(colnames(CLR_transformed_data))
#pheno_list= phenotypes
Overall_result_phenos =tibble()
for (Bug in Prevalent){
if (! Bug %in% colnames(df)){ next }
#Prevalence = sum(as.numeric(as_vector(select(df, Bug)) > 0)) / dim(df)[1]
# print (c(Bug, Prevalence))
Bug2 = paste(c("`",Bug, "`"), collapse="")
for ( pheno in pheno_list){
pheno2 = paste(c("`",pheno, "`"), collapse="")
df[is.na(df[colnames(df) == pheno]) == F, ID] -> To_keep
df_pheno = filter(df, !!sym(ID) %in% To_keep )
Model0 = as.formula(paste( c(Bug2, " ~ read_depth + DNA_concentration_ng_ul + Timepoint_numeric + feeding_mode + (1|CS_BABY_BIOME_ID)"), collapse="" ))
lmer(Model0, df_pheno) -> resultmodel0
base_model=resultmodel0
Model2 = as.formula(paste( c(Bug2, " ~ read_depth + DNA_concentration_ng_ul + Timepoint_numeric + feeding_mode+",pheno2, "+ (1|CS_BABY_BIOME_ID)"), collapse="" ))
lmer(Model2, df_pheno, REML = F) -> resultmodel2
M = "Mixed"
as.data.frame(anova(resultmodel2, base_model))['resultmodel2','Pr(>Chisq)']->p_simp
as.data.frame(summary(resultmodel2)$coefficients)[grep(pheno, row.names(as.data.frame(summary(resultmodel2)$coefficients))),] -> Summ_simple
Summ_simple %>% rownames_to_column("Feature") %>% as_tibble() %>% mutate(P = p_simp, Model_choice = M, Bug =Bug, Pheno=pheno, Model="simple") -> temp_output
rbind(Overall_result_phenos, temp_output) -> Overall_result_phenos
}
}
p=as.data.frame(Overall_result_phenos)
p$FDR<-p.adjust(p$P, method = "BH")
return(p)
}
setwd("/Users/trishlasinha/Desktop/CS_Baby_Biome/submission/2024_submission/analysis/RESULTS/")
metadata<-read.delim("~/Desktop/CS_Baby_Biome/submission/2024_submission/analysis/Metadata_EGA_CS_BABY_BIOME.txt")
metadata[sapply(metadata, is.character)] <- lapply(metadata[sapply(metadata, is.character)], #convert character columns to factors
as.factor)
metadata$Timepoint_categorical<-factor(metadata$Timepoint_categorical, levels = c("W01", "W02", "W03", "W04", "W05", "W06", "M06", "M12"))
metadata$growth_p_limited<-factor(metadata$growth_p_limited, levels = c("P<10", "P10-P50", "P51-90", ">P90"))
metadata$feeding_mode<-factor(metadata$feeding_mode, levels = c("breast_feeding", "mixed_feeding", "formula_feeding"))
AR_GENES<-read.delim("/Users/trishlasinha/Desktop/CS_Baby_Biome/submission/2024_submission/analysis/shortbred_CARD_merged_01_04_2024.csv")
AR_GENES$NG_ID<-substr(AR_GENES$Sample, 0, 13)
AR_GENES$NG_ID<-gsub("_", "", AR_GENES$NG_ID)
AR_GENES<-AR_GENES[!duplicated(AR_GENES$NG_ID),]
row.names(AR_GENES)<-AR_GENES$NG_ID
AR_GENES$Sample=NULL
AR_GENES$NG_ID=NULL
metadata_infants<-metadata %>% drop_na(Timepoint_numeric) # Only infant metadata
metadata_infants <- metadata_infants[!(metadata_infants$Timepoint_categorical %in% c("M06", "M12")), ]
row.names(metadata_infants)<-metadata_infants$bioSampleId
metadata_infants$ID<-row.names(metadata_infants)
missing_rows <- setdiff(rownames(metadata_infants), rownames(AR_GENES))
AR_GENES=AR_GENES[row.names(AR_GENES)%in% rownames(metadata_infants),] # Only AR genes present in infants
AR_GENES$total_AB_load<-rowSums(AR_GENES)
AR_GENES <- AR_GENES[match(rownames(metadata_infants), rownames(AR_GENES)),]
str(AR_GENES$total_AB_load)
AR_load<-AR_GENES %>% select(total_AB_load)
filtered_AR_GENES <- AR_GENES[, !(colSums(AR_GENES) == 0)]
filtered_AR_GENES <- filtered_AR_GENES[, colSums(filtered_AR_GENES != 0) >= 10]
# Run mixed models
AR_load_mixed_all <- mixed_models(metadata_infants, "ID", AR_load, c("cefazoline_measurement_mg_L", "rand_AB", "pre_preg_bmi_mother", "preg_gest_age", "preg_weight_gain", "gravida", "para", "infant_birthweight", "infant_sex", "mother_age_at_delivery","APGAR_1", "APGAR_5", "growth_p_limited", "feeding_mode","living_situation", "cats_dogs"))
AR_genes_mixed_all <- mixed_models(metadata_infants, "ID", filtered_AR_GENES, c("cefazoline_measurement_mg_L", "rand_AB", "pre_preg_bmi_mother", "preg_gest_age", "preg_weight_gain", "gravida", "para", "infant_birthweight", "infant_sex", "mother_age_at_delivery","APGAR_1", "APGAR_5", "growth_p_limited", "feeding_mode","living_situation", "cats_dogs"))
setwd("/Users/trishlasinha/Desktop/CS_Baby_Biome/supplementary/tables/individual")
write.table(AR_load_mixed_all, "Total_AR_load_all_phenotypes_CS_BABY_BIOME_01_04_2024.txt", sep="\t", row.names=F, quote = F)
write.table(AR_genes_mixed_all, "AR_GENES_ALL_all_phenotypes_CS_BABY_BIOME_01_04_2024.txt", sep="\t", row.names=F, quote = F)
all<-merge(AR_load, metadata_infants, by="row.names")
all$AB <-all$rand_AB
setwd("/Users/trishlasinha/Desktop/CS_Baby_Biome/submission/2024_submission/figures/figures_individual/figure_2/")
pdf('AR_load_AB_cs_baby_biome.pdf', width=6, height=6)
ggplot(all, aes(Timepoint_categorical, y=total_AB_load, fill=AB, color=AB)) +
scale_fill_manual(values = c("#54b7a6", "#fa2b13"))+
scale_color_manual(values = c("#54b7a6", "#fa2b13"))+
geom_boxplot(alpha=0.4, outlier.colour = NA)+
geom_point(alpha=0.6,
position = position_jitterdodge(jitter.width = 0.3, jitter.height = 0))+
# geom_jitter() +
ggtitle("")+
theme_bw()+labs(x="", y = "Total AR load")+
theme(
plot.title = element_text(color="black", size=22, face="bold"),
axis.title.x = element_text(color="black", size=22, face="bold"),
axis.title.y = element_text(color="black", size=22, face="bold"),
axis.text.y = element_text(face="bold", size=10),
axis.text.x = element_text(size=22, angle = 60, hjust = 1))
#strip.text.x = element_text(size = 10))
dev.off()