-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
105 lines (88 loc) · 2.79 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# -*- coding: utf-8 -*-
import sys
import os
import tensorflow as tf
import Utils
if 'COLAB_GPU' in os.environ:
# fix resolve modules
from os.path import dirname
sys.path.append(dirname(dirname(dirname(__file__))))
else: # local GPU
gpus = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_virtual_device_configuration(
gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=3 * 1024)]
)
from model import createModel
from Core.MazeRLWrapper import MazeRLWrapper
import glob
from Agent.DQNAgent import DQNAgent
from Agent.DQNEnsembleAgent import DQNEnsembleAgent
import pylab as plt
#######################################
MAZE_FOV = 3
MAZE_MINIMAP_SIZE = 8
#######################################
def plot2file(data, filename, chartname):
plt.clf()
figSize = plt.rcParams['figure.figsize']
fig = plt.figure(figsize=(figSize[0] * 2, figSize[1]))
axe = fig.subplots()
series = data[chartname]
for name, dataset in series.items():
axe.plot(dataset, label=name)
axe.title.set_text(chartname)
fig.tight_layout()
fig.subplots_adjust(right=0.85)
fig.legend(loc="center right", prop={'size': 12})
fig.savefig(filename)
plt.close(fig)
return
def testAgent(environments, agent, name, metrics, N=20):
print('Agent: %s' % name)
scoreTop90 = metrics['Worst scores (top 90%)']['%s' % name] = []
scoreTop10 = metrics['Best scores (top 10%)']['%s' % name] = []
for i in range(N):
print('Round %d/%d...' % (i, N))
scores = []
for e in environments: e.reset()
replays = Utils.emulateBatch(environments, agent, maxSteps=1000)
for (replay, _), env in zip(replays, environments):
scores.append(env.score)
scores = list(sorted(scores, reverse=True))
scoreTop90.append(scores[int(0.9 * len(scores))])
scoreTop10.append(scores[int(0.1 * len(scores))])
return
if __name__ == "__main__":
MAZE_PARAMS = {
'size': 64,
'FOV': MAZE_FOV,
'minimapSize': MAZE_MINIMAP_SIZE,
'loop limit': 1000,
}
environments = [MazeRLWrapper(MAZE_PARAMS) for _ in range(100)]
MODEL_INPUT_SHAPE = environments[0].input_size
metrics = {
'Worst scores (top 90%)': {},
'Best scores (top 10%)': {}
}
agents = []
for i, x in enumerate(glob.iglob('weights/*.h5')):
filename = os.path.abspath(x)
model = createModel(shape=MODEL_INPUT_SHAPE)
model.load_weights(filename)
if os.path.basename(filename).startswith('agent-'):
agents.append(model)
testAgent(
environments,
DQNAgent(model),
name=os.path.basename(filename)[:-3],
metrics=metrics
)
testAgent(
environments,
DQNEnsembleAgent(agents),
name='ensemble',
metrics=metrics
)
for i, name in enumerate(metrics.keys()):
plot2file(metrics, 'chart-%d.jpg' % i, name)