-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_cifar.py
108 lines (90 loc) · 4.26 KB
/
test_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader, TensorDataset
import os
import numpy as np
import pandas as pd
import argparse
from ResNets import *
from Normalisations import *
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
torch.manual_seed(0) # hopefully this will ensure fair comparison across different norms
def print_final_metrics(model, device, X_complete, Y_complete, dataset_name):
XY = TensorDataset(X_complete, Y_complete)
Ypred = []
loader = DataLoader(XY, batch_size=128)
model.eval() #this is useful in informing nn.modules to appropriately behave during inference (for example: nn.Dropout)
with torch.no_grad():
for _, (X,Y) in enumerate(loader):
X=X.to(device)
Y=Y.to(device)
Y_=model(X)
Y_predicted = Y_.argmax(dim=1)
Ypred.append(Y_predicted)
Ypred=torch.cat(Ypred)
assert Ypred.shape[0]==Y_complete.shape[0]
acc=accuracy_score(Y_complete.cpu().numpy(),Ypred.cpu().numpy())
micro_f1=f1_score(Y_complete.cpu().numpy(),Ypred.cpu().numpy(),average='micro')
macro_f1=f1_score(Y_complete.cpu().numpy(),Ypred.cpu().numpy(),average='macro')
print(dataset_name, "accuracy: ", acc,"micro f1: ", micro_f1, "macro f1: ", macro_f1)
def compute_final_metrics(model, device, per_pixel_mean, data_dir):
t = transforms.Compose([transforms.ToTensor(),])
ts = torchvision.datasets.CIFAR10(root=data_dir, train=True, transform=t)
loader = DataLoader(ts, batch_size=40000, shuffle=True, num_workers=2)
Xs,Ys=[],[] #contains train and val set (torch.tensor)
for _, (X,Y) in enumerate(loader):
X-=per_pixel_mean
Xs.append(X)
Ys.append(Y)
ts = torchvision.datasets.CIFAR10(root=data_dir, train=False, transform=t)
loader = DataLoader(ts, batch_size=10000, shuffle=True, num_workers=2)
Xtest,Ytest = next(iter(loader))
Xtest -= per_pixel_mean
# now we have Xtrain,Ytrain Xval,Yval Xtest,Ytest
# compute metrics on them
print_final_metrics(model, device, Xs[0], Ys[0], 'train set')
print_final_metrics(model, device, Xs[1], Ys[1], 'validation set')
print_final_metrics(model, device, Xtest, Ytest, 'test set')
parser = argparse.ArgumentParser(description='Testing ResNets with Normalizations on CIFAR10')
parser.add_argument('--normalization', type=str)
parser.add_argument('--model_file', type=str)
parser.add_argument('--test_data_file', type=str)
parser.add_argument('--output_file', type=str)
parser.add_argument('--n', help='number of (per) residual blocks', type=int)
parser.add_argument('--r', default=10, help='number of classes', type=int)
parser.add_argument('--fm_dir', default=False, help='pass data_dir if final metrics over train-val-test dataset is to be computed')
args=parser.parse_args()
n=args.n
r=args.r
normalization_layers = {'torch_bn':nn.BatchNorm2d,'bn':BatchNorm2D,'in':InstanceNorm2D,'bin':BIN2D,'ln':LayerNorm2D,'gn':GroupNorm2D,'nn':None}
norm_layer_name=args.normalization
norm_layer=normalization_layers[norm_layer_name]
model = ResNet(n,r,norm_layer_name,norm_layer)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = model.to(device)
per_pixel_mean = torch.tensor((0.4914, 0.4822, 0.4465)).view([1,3,1,1])
if os.path.exists(args.model_file):
model.load_state_dict(torch.load(args.model_file,map_location=device))
print(args.normalization,"model loaded")
# if final metrics are to be computed, then data directory has to be passed :-
if args.fm_dir != False:
compute_final_metrics(model, device, per_pixel_mean, args.fm_dir)
print("testing the model on unseen data (loaded from csv file)")
X_test = torch.from_numpy(pd.read_csv(args.test_data_file,header=None).values.reshape((-1,3,32,32))/255.).float() - per_pixel_mean
X_complete = TensorDataset(X_test)
Ypred = []
loader = DataLoader(X_complete, batch_size=64)
model.eval() #this is useful in informing nn.modules to appropriately behave during inference (for example: nn.Dropout)
with torch.no_grad():
for _, X in enumerate(loader): # X is a list of size 1, having tensor of shape: batch_size x 3 x 32 x 32
X=X[0].to(device)
Y_=model(X)
Y_predicted = Y_.argmax(dim=1)
Ypred.append(Y_predicted)
Ypred=torch.cat(Ypred).cpu().numpy().reshape((-1,1))
np.savetxt(args.output_file, Ypred, fmt='%d')