-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathFusion_module.py
61 lines (50 loc) · 2.32 KB
/
Fusion_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
import torch.nn as nn
from torch.nn.functional import softmax
from conv_util import (
Conv1dNormRelu,
Conv2dNormRelu,
)
class GlobalFuser(nn.Module):
def __init__(self, in_channels_2d, in_channels_3d, fusion_fn="gated", norm=None):
super().__init__()
self.mlps3d = Conv2dNormRelu(in_channels_2d, in_channels_2d, norm=norm)
if fusion_fn == "gated":
self.fuse3d = GatedFusion(
in_channels_2d, in_channels_3d, in_channels_3d, "nchw", norm
)
else:
raise ValueError
def forward(self, feat_2d, feat_3d):
"""
:param feat_2d: features of images: [B, n_channels_2d, H, W]
:param feat_3d: features of points: [B, n_channels_3d, H, W]
:return: out3d: fused features of points: [B, n_channels_3d, H, W]
"""
feat_2d = feat_2d.float().permute(0, 3, 1, 2)
feat_3d = feat_3d.float().permute(0, 3, 1, 2)
out3d = self.fuse3d(self.mlps3d(feat_2d.detach().clone()), feat_3d)
return out3d
class GatedFusion(nn.Module):
def __init__(
self, in_channels_2d, in_channels_3d, out_channels, feat_format, norm=None
):
super().__init__()
if feat_format == "nchw":
self.align1 = Conv2dNormRelu(in_channels_2d, out_channels, norm=norm)
self.align2 = Conv2dNormRelu(in_channels_3d, out_channels, norm=norm)
self.mlp1 = Conv2dNormRelu(out_channels, 2, norm=None, activation="sigmoid")
self.mlp2 = Conv2dNormRelu(out_channels, 2, norm=None, activation="sigmoid")
elif feat_format == "ncm":
self.align1 = Conv1dNormRelu(in_channels_2d, out_channels, norm=norm)
self.align2 = Conv1dNormRelu(in_channels_3d, out_channels, norm=norm)
self.mlp1 = Conv1dNormRelu(out_channels, 2, norm=None, activation="sigmoid")
self.mlp2 = Conv1dNormRelu(out_channels, 2, norm=None, activation="sigmoid")
else:
raise ValueError
def forward(self, feat_2d, feat_3d):
feat_2d = self.align1(feat_2d) # [N, C_out, H, W]
feat_3d = self.align2(feat_3d) # [N, C_out, H, W]
weight = self.mlp1(feat_2d) + self.mlp2(feat_3d) # [N, 2, H, W]
weight = softmax(weight, dim=1) # [N, 2, H, W]
return feat_2d * weight[:, 0:1] + feat_3d * weight[:, 1:2]