-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnalyser.py
172 lines (147 loc) · 6.92 KB
/
Analyser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from logging import root
import pandas as pd
import os
import numpy as np
import cvxpy as cp
from PyQt5.QtCore import QObject, pyqtSignal
class Analyser(QObject):
finished = pyqtSignal()
progress = pyqtSignal(float)
finalList = pyqtSignal(list)
def __init__(self, root_path, path, pick_num, balance, sortby):
super().__init__()
# Read the CSV file into a DataFrame
self.root_path = root_path
self.path = path
self.pick_num = pick_num
self.balance = balance
self.sortby = sortby
def getChanges(self, df, period, periodType = 'M'):
if periodType == 'D':
data = df.tail(1*period+1)
if periodType == 'W':
data = df.tail(5*period+1)
if periodType == 'M':
data = df.tail(21*period+1)
chg = (data['Price'].iloc[-1] - data['Price'].iloc[0])*100/data['Price'].iloc[0]
return round(chg,4)
def getMaxDown(self, df, days):
data = df.tail(days)
data.reset_index(drop=True, inplace=True)
minVal = 999999
maxVal = 0
day_h = 0
day_l = 0
result = []
for index, row in data.iterrows():
price = row['Price']
if price > maxVal:
if index > day_h:
result.append([(minVal-maxVal)*100/maxVal,day_l-day_h,index-day_h])
maxVal = price
minVal = maxVal
day_h = index
day_l = index
elif price < minVal:
minVal = price
day_l = index
result.append([(minVal-maxVal)*100/maxVal,day_l-day_h,len(data)-day_h-1])
array = np.array(result)
sorted_array = array[array[:, 0].argsort()]
worst = [0,0,0]
VaR = [0,0,0]
if len(sorted_array) > 0:
percentile_index = int(0.2 * len(sorted_array))
if percentile_index >= 0 and percentile_index < len(sorted_array):
VaR = [sorted_array[percentile_index][0],sorted_array[percentile_index][1],sorted_array[percentile_index][2]]
worst = [sorted_array[0][0],sorted_array[0][1],sorted_array[0][2]]
return worst,VaR
def getStd(self, df, days):
df['chg'] = df['Price'].diff()
return df.tail(days)['chg'].std()
def getAvgVol(self, df, days):
return int(df.tail(days)['Volume'].mean(numeric_only=True))
def analyse(self, df):
price = df.tail(1).iloc[0]['Price']
D1 = self.getChanges(df, 1, 'D')
W1 = self.getChanges(df, 1, 'W')
M1 = self.getChanges(df, 1)
M3 = self.getChanges(df, 3)
M6 = self.getChanges(df, 6)
M12 = self.getChanges(df, 12)
std = self.getStd(df, 3*21)
vol = self.getAvgVol(df, 3*21)
worst, VaR = self.getMaxDown(df, 3*21)
return [price,vol,D1,W1,M1,M3,M6,M12,std,worst[0],worst[1],worst[2],VaR[0],VaR[1],VaR[2]]
def getWeightBasedOnRisk(self, std, returns):
data = {'std':std,'return': returns}
df = pd.DataFrame(data)
# Calculate the covariance matrix from the standard deviations
cov_matrix = np.diag(df['std'] ** 2)
# Number of assets
num_assets = len(df)
# Define the variables
weights = cp.Variable(num_assets)
size = len(std)
# Define the objective function (minimize portfolio variance)
portfolio_variance = cp.quad_form(weights, cov_matrix)
objective = cp.Minimize(portfolio_variance)
# Define the constraints
constraints = [
cp.sum(weights) == 1, # Sum of weights equals 1
weights >= round(1.0/(size*2.5),2) # Non-negativity constraint on weights
]
# Solve the optimization problem
problem = cp.Problem(objective, constraints)
problem.solve()
# Get the optimal weights
optimal_weights = weights.value.tolist()
return optimal_weights
def floor_to_hundred(self, number):
return (number // 100) * 100
def startAnalyse(self):
result = []
self.progress.emit(0)
details = pd.read_csv(self.root_path+'/Funds.csv')
i=1
length = len(os.listdir(self.path))
for filename in os.listdir(self.path):
if filename.endswith('.csv'):
file_path = os.path.join(self.path, filename)
# Read the CSV file into a DataFrame
df = pd.read_csv(file_path).dropna(subset=['Price'])
ticker = os.path.splitext(filename)[0]
detail = details[details['Code']==ticker].iloc[0]
try:
r = self.analyse(df)
result.append([ticker,detail[0],detail[3],round(detail[4]/1000000,2),detail[10]]+r)
except Exception as error:
pass
self.progress.emit(int(i)*100/length)
i = i + 1
data_df = pd.DataFrame(result, columns=['Code','Name','Sector','Market Cap','Mgt Fee','Price','Avg Volume','1D','1W','1M','3M','6M','12M','Std','Max Drawdown','Max Drawdown Duration','Drawdown Recovered Duration','80% Drawdown','80% Drawdown Duration','80% Drawdown Recovered Duration'])
df_sorted = data_df.sort_values(by='3M', ascending=False)
df_sorted.to_csv(self.root_path+'/result.csv', index=False)
# Filter based on the conditions
df_filtered = df_sorted[(df_sorted['Market Cap'] > 20 ) &
(df_sorted['Avg Volume'] > 5000 ) &
(df_sorted['Max Drawdown'] > -10 ) &
(df_sorted['80% Drawdown'] > -3 ) &
(df_sorted['Max Drawdown Duration'] < 10 ) &
(df_sorted['80% Drawdown Duration'] < 3 ) &
(df_sorted['1M'] > 1 ) &
(df_sorted['3M'] > 5 ) &
(df_sorted['6M'] > 10)]
selected_num = self.pick_num
balance = self.balance
selected=df_filtered.sort_values(by=self.sortby, ascending=False).head(selected_num)
selected.reset_index(drop=True, inplace=True)
std = selected['Std'].tolist()
returns = selected['3M'].tolist()
weights_risk = self.getWeightBasedOnRisk(std, returns)
final_result = []
for index, row in selected.iterrows():
final_result.append([row['Code'],row['Sector'],f"${row['Price']:.2f}",f"{weights_risk[index]*100:.2f}%",f"${self.floor_to_hundred(balance*weights_risk[index]):.2f}",f"{self.floor_to_hundred(balance*weights_risk[index])/row['Price']:.0f}",f"{row['1M']:.2f}%",f"{row['3M']:.2f}%",f"{row['6M']:.2f}%",f"{row['12M']:.2f}%",f"{row['Max Drawdown']:.2f}%",f"{row['80% Drawdown']:.2f}%",f"{row['Market Cap']:.2f}M",f"{row['Avg Volume']:.0f}",f"{row['Mgt Fee']:.2f}%"])
self.progress.emit(100)
self.finalList.emit(final_result)
self.finished.emit()