-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
283 lines (227 loc) · 10.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from pathlib import Path
import numpy as np
import struct
import torch
def serialize_numpy_array(arr):
try:
arr = arr.numpy()
except:
pass
# Ensure the array is of the correct type
arr = arr.astype(np.float32)
# Prepare dimensions data
dims = list(arr.shape)
ndims = arr.ndim
# Serialize dimensions and number of dimensions
serialized = struct.pack('i', ndims)
if ndims > 0:
serialized += struct.pack(f'{ndims}i', *dims)
serialized += struct.pack('i', arr.size)
serialized += struct.pack('i', arr.nbytes)
# Serialize data
serialized += arr.tobytes()
return serialized
def serialize_multiple_arrays(arrays):
array_dict = {}
for name, array in arrays.items():
try:
array = array.numpy()
except:
pass
if array.ndim == 0:
print(f"Skipping 0-dim array {name}")
elif array.dtype != np.float32:
print(f"Skipping non-float32 (dtype {array.dtype}) array {name}")
else:
array_dict[name] = array
version = 1
serialized = struct.pack('ii', version, len(array_dict))
for arr_name in array_dict:
encoded = arr_name.encode('utf8')
serialized += struct.pack('i', len(encoded))
serialized += encoded
for arr in array_dict.values():
serialized += serialize_numpy_array(arr)
return serialized
def state_dict_from_bytes(serialized_data):
version, num_arrays = struct.unpack('ii', serialized_data[:8])
assert version == 1, f"Unsupported version {version}"
offset = 8
names = []
state_dict = {}
for i in range(num_arrays):
name_len = struct.unpack('i', serialized_data[offset:offset+4])[0]
offset += 4
name = serialized_data[offset:offset+name_len].decode('utf8')
offset += name_len
names.append(name)
for name in names:
# print(name)
ndim = struct.unpack('i', serialized_data[offset:offset+4])[0]
offset += 4
# print(ndim)
if ndim > 0:
dims = struct.unpack(f'{ndim}i', serialized_data[offset:offset+4*ndim])
offset += 4 * ndim
else:
dims = []
# print(dims)
size = struct.unpack('i', serialized_data[offset:offset+4])[0]
offset += 4
nbytes = struct.unpack('i', serialized_data[offset:offset+4])[0]
offset += 4
array = np.frombuffer(serialized_data[offset:offset+nbytes], dtype=np.float32).reshape(dims)
offset += nbytes
state_dict[name] = array
return state_dict
# Example usage
# arr = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
# serialized_data = serialize_multiple_arrays(state_dict)
# Path('test.testtensor').write_bytes(serialized_data)
def prepare_lstm_weights_and_biases_for_c(state_dict):
ih_hh_l0 = np.concatenate([state_dict['_model1.lstm.weight_ih_l0'], state_dict['_model1.lstm.weight_hh_l0']], -1)
ih_hh_l1 = np.concatenate([state_dict['_model1.lstm.weight_ih_l1'], state_dict['_model1.lstm.weight_hh_l1']], -1)
weights = np.stack([ih_hh_l0, ih_hh_l1])
# NOTE(irwin): we add biases since in vanilla LSTM they are fused, but in torch they are separate for CUDA compatibility
biases_l0 = state_dict['_model1.lstm.bias_ih_l0'] + state_dict['_model1.lstm.bias_hh_l0']
biases_l1 = state_dict['_model1.lstm.bias_ih_l1'] + state_dict['_model1.lstm.bias_hh_l1']
biases = np.stack([biases_l0, biases_l1])
lstm_weights_dict = {
'weights': weights,
'biases': biases,
}
return lstm_weights_dict
def serialize_lstm_weights_and_biases_for_c(state_dict):
lstm_dict = prepare_lstm_weights_and_biases_for_c(state_dict)
lstm_bytes = serialize_multiple_arrays(lstm_dict)
Path('lstm_silero_3.1_16k_for_c.testtensor').write_bytes(lstm_bytes)
def transformer_l1_key_map():
map = {}
i = 0
map['dw_conv_weights'] = '_model1.first_layer.0.dw_conv.0.weight'
map['dw_conv_biases'] = '_model1.first_layer.0.dw_conv.0.bias'
map['pw_conv_weights'] = '_model1.first_layer.0.pw_conv.0.weight'
map['pw_conv_biases'] = '_model1.first_layer.0.pw_conv.0.bias'
map['proj_weights'] = '_model1.first_layer.0.proj.weight'
map['proj_biases'] = '_model1.first_layer.0.proj.bias'
map['attention_weights'] = f'_model1.encoder.{i}.attention.QKV.weight'
map['attention_biases'] = f'_model1.encoder.{i}.attention.QKV.bias'
map['attention_proj_weights'] = f'_model1.encoder.{i}.attention.out_proj.weight'
map['attention_proj_biases'] = f'_model1.encoder.{i}.attention.out_proj.bias'
map['norm1_weights'] = f'_model1.encoder.{i}.norm1.weight'
map['norm1_biases'] = f'_model1.encoder.{i}.norm1.bias'
map['linear1_weights'] = f'_model1.encoder.{i}.linear1.weight'
map['linear1_biases'] = f'_model1.encoder.{i}.linear1.bias'
map['linear2_weights'] = f'_model1.encoder.{i}.linear2.weight'
map['linear2_biases'] = f'_model1.encoder.{i}.linear2.bias'
map['norm2_weights'] = f'_model1.encoder.{i}.norm2.weight'
map['norm2_biases'] = f'_model1.encoder.{i}.norm2.bias'
i += 1
map['conv_weights'] = f'_model1.encoder.{i}.weight'
map['conv_biases'] = f'_model1.encoder.{i}.bias'
i += 1
map['batch_norm_weights'] = f'_model1.encoder.{i}.weight'
map['batch_norm_biases'] = f'_model1.encoder.{i}.bias'
map['batch_norm_running_mean'] = f'_model1.encoder.{i}.running_mean'
map['batch_norm_running_var'] = f'_model1.encoder.{i}.running_var'
return map
def transformer_l2_key_map(i):
map = {}
map['dw_conv_weights'] = f'_model1.encoder.{i}.0.dw_conv.0.weight'
map['dw_conv_biases'] = f'_model1.encoder.{i}.0.dw_conv.0.bias'
map['pw_conv_weights'] = f'_model1.encoder.{i}.0.pw_conv.0.weight'
map['pw_conv_biases'] = f'_model1.encoder.{i}.0.pw_conv.0.bias'
map['proj_weights'] = f'_model1.encoder.{i}.0.proj.weight'
map['proj_biases'] = f'_model1.encoder.{i}.0.proj.bias'
i += 1
map['attention_weights'] = f'_model1.encoder.{i}.attention.QKV.weight'
map['attention_biases'] = f'_model1.encoder.{i}.attention.QKV.bias'
map['attention_proj_weights'] = f'_model1.encoder.{i}.attention.out_proj.weight'
map['attention_proj_biases'] = f'_model1.encoder.{i}.attention.out_proj.bias'
map['norm1_weights'] = f'_model1.encoder.{i}.norm1.weight'
map['norm1_biases'] = f'_model1.encoder.{i}.norm1.bias'
map['linear1_weights'] = f'_model1.encoder.{i}.linear1.weight'
map['linear1_biases'] = f'_model1.encoder.{i}.linear1.bias'
map['linear2_weights'] = f'_model1.encoder.{i}.linear2.weight'
map['linear2_biases'] = f'_model1.encoder.{i}.linear2.bias'
map['norm2_weights'] = f'_model1.encoder.{i}.norm2.weight'
map['norm2_biases'] = f'_model1.encoder.{i}.norm2.bias'
i += 1
map['conv_weights'] = f'_model1.encoder.{i}.weight'
map['conv_biases'] = f'_model1.encoder.{i}.bias'
i += 1
map['batch_norm_weights'] = f'_model1.encoder.{i}.weight'
map['batch_norm_biases'] = f'_model1.encoder.{i}.bias'
map['batch_norm_running_mean'] = f'_model1.encoder.{i}.running_mean'
map['batch_norm_running_var'] = f'_model1.encoder.{i}.running_var'
return map
def transformer_l3_key_map(i):
map = transformer_l2_key_map(i)
del map["proj_weights"]
del map["proj_biases"]
return map
def prepare_silero_v31_weights(state_dict):
weight_dict = {}
weight_dict['forward_basis_buffer'] = state_dict['_model1.feature_extractor.forward_basis_buffer']
l1_key_map = transformer_l1_key_map()
l2_key_map = transformer_l2_key_map(4)
l3_key_map = transformer_l3_key_map(9)
l4_key_map = transformer_l2_key_map(14)
for key in l1_key_map:
weight_dict[f"transformer_l1.{key}"] = state_dict[l1_key_map[key]]
for key in l2_key_map:
weight_dict[f"transformer_l2.{key}"] = state_dict[l2_key_map[key]]
for key in l3_key_map:
weight_dict[f"transformer_l3.{key}"] = state_dict[l3_key_map[key]]
for key in l4_key_map:
weight_dict[f"transformer_l4.{key}"] = state_dict[l4_key_map[key]]
lstm_weights = prepare_lstm_weights_and_biases_for_c(state_dict)
weight_dict.update(lstm_weights)
weight_dict['decoder_weights'] = state_dict['_model1.decoder.1.weight']
weight_dict['decoder_biases'] = state_dict['_model1.decoder.1.bias']
return weight_dict
def serialize_silero_v31_weights_16k():
jit_model = torch.jit.load(r"silero-vad-models\v3.1\silero_vad.jit")
jit_model.eval()
sd = prepare_silero_v31_weights(jit_model.state_dict())
ser = serialize_multiple_arrays(sd)
print(len(ser))
Path('testdata/silero_v31_16k.testtensor').write_bytes(ser)
def how_much_to_pad(actual_size, multiple):
rem = actual_size % multiple
if rem == 0:
return 0
else:
return multiple - rem
def audio_from_raw_int16_unpadded(filename):
audio_data = torch.from_numpy(np.fromfile(filename, dtype=np.int16)).float()
audio_data /= 32768.0
return audio_data
def audio_from_raw_int16(filename, sequence_count):
audio_data = torch.from_numpy(np.fromfile(filename, dtype=np.int16)).float()
audio_data /= 32768.0
size = audio_data.size(0)
pad = how_much_to_pad(size, sequence_count)
audio_data_padded = torch.nn.functional.pad(audio_data, (0, pad), mode="constant")
return audio_data_padded.reshape(-1, sequence_count)
def normalized_audio_from_raw_int16(filename, sequence_count, normalization_window=None):
if normalization_window is None:
normalization_window = sequence_count
audio_data = torch.from_numpy(np.fromfile(filename, dtype=np.int16)).float()
# audio_data /= audio_data.abs().max()
size = audio_data.size(0)
pad = how_much_to_pad(size, normalization_window)
audio_data_padded = torch.nn.functional.pad(audio_data, (0, pad), mode="constant")
audio_data_chunked = audio_data_padded.reshape(-1, normalization_window)
local_abs_maximums = audio_data_chunked.abs().max(axis=1, keepdim=True)[0]
audio_data_normalized = audio_data_chunked / local_abs_maximums
audio_data_ = audio_data_normalized.reshape(-1)[:size]
pad2 = how_much_to_pad(size, sequence_count)
padded2 = torch.nn.functional.pad(audio_data_, (0, pad2), mode="constant")
return padded2.reshape(-1, sequence_count)
def chunks_v5_from_raw_int16(path, prefix, window):
cont = normalized_audio_from_raw_int16(path, window)
return torch.nn.functional.pad(cont.flatten(), (prefix, 0), mode='constant', value=0.0).unfold(0, window+prefix, window)
def chunks_v5_from_raw_int16_nonorm(path, prefix, window):
cont = audio_from_raw_int16(path, window)
return torch.nn.functional.pad(cont.flatten(), (prefix, 0), mode='constant', value=0.0).unfold(0, window+prefix, window)