-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
274 lines (225 loc) · 9.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch.optim.lr_scheduler import CosineAnnealingLR
import math
from tqdm import tqdm
import json
from tokenizers import Tokenizer
from datetime import datetime
import gc
class GPTConfig:
def __init__(
self,
vocab_size=22588,
n_embd=768, # Reduced from 2048
n_head=12, # Reduced from 16
n_layer=8, # Reduced from 12
dropout=0.1,
block_size=256, # Reduced from 512
learning_rate=3e-4,
max_epochs=50,
batch_size=8, # Reduced from 64
grad_clip=1.0,
):
self.vocab_size = vocab_size
self.n_embd = n_embd
self.n_head = n_head
self.n_layer = n_layer
self.dropout = dropout
self.block_size = block_size
self.learning_rate = learning_rate
self.max_epochs = max_epochs
self.batch_size = batch_size
self.grad_clip = grad_clip
# Model Architecture
class SelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.w_k = nn.Linear(config.n_embd, config.n_embd)
self.w_q = nn.Linear(config.n_embd, config.n_embd)
self.w_v = nn.Linear(config.n_embd, config.n_embd)
self.attn_drop = nn.Dropout(config.dropout)
self.resid_drop = nn.Dropout(config.dropout)
self.proj = nn.Linear(config.n_embd, config.n_embd)
self.n_head = config.n_head
self.n_embd = config.n_embd
def forward(self, x):
B, T, C = x.size()
k = self.w_k(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = self.w_q(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = self.w_v(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = F.softmax(att, dim=-1)
att = self.attn_drop(att)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_drop(self.proj(y))
return y
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln1 = nn.LayerNorm(config.n_embd)
self.attn = SelfAttention(config)
self.ln2 = nn.LayerNorm(config.n_embd)
self.mlp = nn.Sequential(
nn.Linear(config.n_embd, 4 * config.n_embd),
nn.GELU(),
nn.Linear(4 * config.n_embd, config.n_embd),
nn.Dropout(config.dropout),
)
def forward(self, x):
x = x + self.attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd)
self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
self.drop = nn.Dropout(config.dropout)
self.blocks = nn.ModuleList([Block(config) for _ in range(config.n_layer)])
self.ln_f = nn.LayerNorm(config.n_embd)
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.block_size = config.block_size
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, idx, targets=None):
b, t = idx.size()
assert t <= self.block_size, f"Cannot forward sequence of length {t}, block size is only {self.block_size}"
token_embeddings = self.tok_emb(idx)
position_embeddings = self.pos_emb[:, :t, :]
x = self.drop(token_embeddings + position_embeddings)
for block in self.blocks:
x = block(x)
x = self.ln_f(x)
logits = self.head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
class WikiTextDataset(Dataset):
def __init__(self, texts, tokenizer, max_length=256): # Reduced max_length
self.tokenizer = tokenizer
self.max_length = max_length
print("Tokenizing texts...")
self.examples = []
for text in tqdm(texts):
tokens = self.tokenizer.encode(text).ids
for i in range(0, len(tokens) - max_length, max_length // 2):
chunk = tokens[i:i + max_length]
if len(chunk) < max_length:
chunk = chunk + [0] * (max_length - len(chunk))
self.examples.append(chunk)
def __len__(self):
return len(self.examples)
def __getitem__(self, idx):
tokens = self.examples[idx]
return torch.tensor(tokens[:-1]), torch.tensor(tokens[1:])
def train():
# Clear GPU memory
torch.cuda.empty_cache()
gc.collect()
print("Loading Wikipedia data...")
with open('az_wiki_data.json', 'r', encoding='utf-8') as f:
wiki_data = json.load(f)
texts = [page['text'] for page in wiki_data.values()]
tokenizer = Tokenizer.from_file("az_tokenizer.json")
dataset = WikiTextDataset(texts, tokenizer)
train_size = int(0.9 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
config = GPTConfig()
train_loader = DataLoader(
train_dataset,
batch_size=config.batch_size,
shuffle=True,
num_workers=2, # Reduced from 4
pin_memory=True
)
val_loader = DataLoader(
val_dataset,
batch_size=config.batch_size,
shuffle=False,
num_workers=2, # Reduced from 4
pin_memory=True
)
model = GPT(config)
model = model.to('cuda')
print(f"Number of parameters: {sum(p.numel() for p in model.parameters())/1e6:.2f}M")
optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)
scheduler = CosineAnnealingLR(optimizer, T_max=config.max_epochs)
scaler = torch.amp.GradScaler() # Updated deprecation warning
def run_epoch(split, epoch_num=0):
is_train = split == 'train'
model.train(is_train)
if not is_train:
model.eval()
loader = train_loader if is_train else val_loader
losses = []
pbar = tqdm(enumerate(loader), total=len(loader)) if is_train else enumerate(loader)
for it, (x, y) in pbar:
# Clear memory
torch.cuda.empty_cache()
x = x.to('cuda', non_blocking=True)
y = y.to('cuda', non_blocking=True)
with torch.amp.autocast(device_type='cuda'): # Updated deprecation warning
logits, loss = model(x, y)
losses.append(loss.item())
if is_train:
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
pbar.set_description(f"epoch {epoch_num+1} iter {it}: train loss {loss.item():.5f}")
# Delete unnecessary tensors
del x, y, logits
if is_train:
del loss
mean_loss = torch.tensor(losses).mean().item()
return mean_loss
best_val_loss = float('inf')
try:
for epoch in range(config.max_epochs):
print(f"\nEpoch {epoch+1}/{config.max_epochs}")
train_loss = run_epoch('train', epoch_num=epoch)
with torch.no_grad():
val_loss = run_epoch('val')
scheduler.step()
if val_loss < best_val_loss:
best_val_loss = val_loss
print(f"Saving best model with val_loss: {val_loss:.4f}")
torch.save(model.state_dict(), 'best_model.pt')
print(f"Epoch {epoch+1}: train_loss: {train_loss:.4f}, val_loss: {val_loss:.4f}")
if (epoch + 1) % 5 == 0:
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'train_loss': train_loss,
'val_loss': val_loss,
}, f'checkpoint_epoch_{epoch+1}.pt')
except KeyboardInterrupt:
print('Training interrupted, saving checkpoint...')
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'train_loss': train_loss,
'val_loss': val_loss,
}, 'interrupt_checkpoint.pt')
if __name__ == '__main__':
train()