-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSec11 Summation by Parts.tex
97 lines (83 loc) · 3.42 KB
/
Sec11 Summation by Parts.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
\documentclass[../poma-notes.tex]{subfiles}
\begin{document}
\subsection*{Summation by Parts}
\begin{theorem}
Given two sequences $\{a_n\},\ \{b_n\}$, put
\[ A_n = \sum_{k=0}^{n} a_k \]
if $n \ge 0$; put $A_{-1} = 0$. Then, if $0 \le p \le q$, we have
\begin{equation}
\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q-1} A_n(b_n-b_{n+1}) + A_q b_q - A_{p-1}b_p
\end{equation}
\end{theorem}
\begin{proof}
\[
\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q}(A_n - A_{n-1})b_n = \sum_{n=p}^{q} A_n b_n - \sum_{n=p-1}^{q-1}A_n b_{n+1}
\]
式(20),被称为\say{部分和式 partial summation formula},在探索带有 $\Sigma a_n b_n$ 项的级数时非常有用,特别是当 $\{b_n\}$
是单调的情况下。
\end{proof}
\begin{anote}
\begin{align*}
\begin{split}
\sum_{n=p}^{q} a_n b_n & = \sum_{n=p}^{q} (A_n - A_{n-1}) b_n \\
& = \sum_{n=p}^{q} A_n b_n - \sum_{n=p}^{q} A_{n-1} b_n \\
& = \sum_{n=p}^{q-1} A_n b_n + A_q b_q - \sum_{n=p}^{q} A_{n-1} b_n \\
& = \sum_{n=p}^{q-1} A_n b_n + A_q b_q - \sum_{n=p-1}^{q-1} A_n b_{n+1} \\
& = \sum_{n=p}^{q-1} A_n b_n + A_q b_q - \sum_{n=p}^{q-1} A_n b_{n+1} - A_{p-1} b_p \\
& = \sum_{n=p}^{q-1} A_n (b_n + b_{n+1}) + A_q b_q - A_{p-1} b_p \\
\end{split}
\end{align*}
其中第 3 步的第三项 $\sum_{n=p}^{q} A_{n-1} b_n$ 转换至第四步的过程中,可将 $n$ 视为 $m+1$,那么就有
\begin{align*}
\begin{split}
\sum_{n=p}^{q} A_{n-1} b_n & = \sum_{m+1=p}^{q} A_{m+1-1} b_{m+1} \\
& = \sum_{m=p-1}^{q-1} A_m b_{m+1}
\end{split}
\end{align*}
\end{anote}
\begin{theorem}
Suppose
\begin{enumerate}[label=(\alph*)]
\item the partial sums $A_n$ of $\Sigma a_n$ form a bounded sequence;
\item $b_0 \ge b_1 \ge b_2 \ge \cdots$ ;
\item $\lim_{n\to\infty} b_n = 0$.
\end{enumerate}
Then $\Sigma a_n b_n$ converges.
\end{theorem}
\begin{proof}
选取 $M$ 对所有 $n$ 满足 $|A_n| \le M$。给定 $\varepsilon > 0$,存在一个整数 $N$ 使得 $b_N \le (\varepsilon/2M)$。
对于 $N \le p \le q$,有
\begin{align*}
\begin{split}
\Biggl|\sum_{n=p}^{q} a_n b_n\Biggr| & = \Biggl|\sum_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_q b_q - A_{p-q} b_p\Biggr| \\
& \le M \Biggl|\sum_{n=p}^{q-1}(b_n-b_{n+1}) + b_q + b_p\Biggr| \\
& = 2M b_p \le 2M b_N \le \varepsilon
\end{split}
\end{align*}
收敛现在遵循柯西准则。注意第一个不等式中依赖了 $b_n - b_{n+1} \ge 0$。
\end{proof}
\begin{theorem}
Suppose
\begin{enumerate}[label=(\alph*)]
\item $|c_1| \ge |c_2| \ge |c_3| \ge \cdots$;
\item $c_{2m-1} \ge 0,\ c_{2m} \le 0 \qquad (m=1,2,3,\cdots)$;
\item $\lim_{n\to\infty} c_n = 0$.
\end{enumerate}
Then $\Sigma c_n$ converges.
满足 (b) 的级数也被称为\say{交错级数 alternating series};该定理也熟知为莱布尼兹定理。
\end{theorem}
\begin{proof}
应用 Theorem 3.42,以及 $a_n = (-1)^{n+1},\ b_n = |c_n|$。
\end{proof}
\begin{theorem} Suppose the radius of convergence of $\Sigma c_n z^n$ is $1$, and suppose $c_0\ge c_1\ge c_2\ge\cdots,
\lim_{n\to\infty}c_n = 0$. Then $\Sigma c_n z^n$ converges at every point on the circle $|z|=1$,
except possibly at $z=1$.
\end{theorem}
\begin{proof}
令 $a_n = z^n,\ b_n = c_n$。Theorem 3.42 的假设满足了,因为
\[
|A_n| = \Biggl|\sum_{m=0}^{n}z^m\Biggr| = \Biggl|\frac{1-z^{n+1}}{1-z}\Biggr| \le \frac{2}{|1-z|}
\]
如果 $|z| = 1,\ z \ne 1$
\end{proof}
\end{document}