-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlambda_INTERPOLATE.m
163 lines (120 loc) · 6.15 KB
/
lambda_INTERPOLATE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
function [ACS_INTERP] = lambda_INTERPOLATE(lambdA_ORGNAL,ACS_ORGNAL,lambdA_TRNSCRBE)
% lambda_INTERPOLATE
% Jesse Bausell
% October 24, 2016
%
% lambda_INTERPOLATE is intended to be used with ACS data, but can be used
% for other applications as well. The program allows the user to find the
% y-value of points that fall within a two-dimensional curve on the x-axis
% but are in between (or slightly different) than the x-values (x-array)
% enumerated in the curve. Plese note the abreviations used in the
% annotation: absorption (a) and attenuation (c).
%
% Inputs:
% lambdA_ORGNAL - the x-array that will serve as the reference for the
% interpolation
% ACS_ORGNAL - the y-array (ACS values most likely) that corresponds to the
% x-array.
% lambdA_TRNSCRBE- the points that the user wants interpolated.
%
% Outputs:
% ACS_INTERP - the newly-interpolated points for the y-axis.
%
% Please note: lambda_INTERPOLATE will only accept one-demensional
% HORIZONTAL arrays for all three input variables. lambdA_ORGNAL and ACS_ORGNAL
% MUST BE EQUAL lengths.
a = size(lambdA_ORGNAL);
b = size(ACS_ORGNAL);
c = size(lambdA_TRNSCRBE);
% These three lines get the dimensions of all of the input matrices.
if ~isequal(a(1),1) || ~isequal(b(1),1) || ~isequal(c(1),1)
% This if statement is an error filter. It protects the program's
% function by not allowing it to run if something more than an array is
% generated (more than one row).
error('All inputs must be SINGLE row horizontal arrays!')
end
if ~isequal(size(lambdA_ORGNAL),size(ACS_ORGNAL))
% This if statement is another error filter. It protects the program's
% function by not allowing it to run if lambdA_ORGNAL and ACS_ORGNAL
% are different sizes.
error('lambdA_ORGNAL and ACS_ORGNAL must be the same lengths. Though you knew!')
end
ACS_INTERP = nan(c);
% Creates the output variable that can be indexed in the for-loop below.
for ii = 1:c(2)
%This for loop is the meat and potatoes of the program. It does several
%things. First, it determines the location (on the x-axis) of the point
%to interpolate (lambdA_TRNSCRBE), finds the three nearest points to it
%on the original arrays (x and y), and then interpolates it using the
%spline function.
diff_ARRAY = abs(lambdA_ORGNAL - lambdA_TRNSCRBE(ii));
lambda_IND = find(diff_ARRAY == min(diff_ARRAY)); lambda_IND = lambda_IND(1);
% Determine the location (index) of the x-value that is the closest in
% magnitude to the point we are interpolating.
lambda_IND_HI = NaN; % The upper interpolation input limit
lambda_IND_LOW = NaN; % The lower interpolation limit
keY = 0; % They Key lets us know which equation to use for interpolation (there are some options)
% These are baseline values of three variables used in the code below.
% These values are redesignated depending on the relationship between
% original and interpolated values.
if (lambdA_ORGNAL(lambda_IND) - lambdA_TRNSCRBE(ii)) < 0
% If the x-value closest to the interpolation point is below it on
% the x axis.
lambda_IND_LOW = lambda_IND;
lambda_IND_HI = lambda_IND + 1;
keY = 1;
% Redefine the baseline variables.
elseif (lambdA_ORGNAL(lambda_IND) - lambdA_TRNSCRBE(ii)) > 0
% If the x-value is closest to the interpolation point above it on
% teh x-axis.
lambda_IND_LOW = lambda_IND - 1;
lambda_IND_HI = lambda_IND;
keY = -1;
% Redefine the baseline variables.
end
if isequal(lambda_IND_HI,length(lambdA_ORGNAL)+1)
% If the point of interpolation is greater than the largest point
% on the x-array.
lambda_IND_HI = lambda_IND_HI-1;
lambda_IND_LOW = lambda_IND_LOW - 1;
% Redefine the baseline variables. Make the high and low point the
% largest and second largest points on the x-array.
elseif isequal(lambda_IND_LOW,0)
% If the point of interpolation is less than the smallest point
% on the x-array.
lambda_IND_LOW = lambda_IND_LOW+1;
lambda_IND_HI = lambda_IND_HI + 1;
% Redefine the baseline variables. Make the high and low point the
% smallest and second smallest points on the x-array.
end
if isequal(lambda_IND_LOW,1)
% If lambda_IND_LOW is the lowest point on the x-array.
keY = 1; %Make sure that we slide the interpolation index to the right.
elseif isequal(lambda_IND_HI,length(lambdA_ORGNAL))
% If lambda_IND_LOW is the highest point on the x-array.
keY = -1; %Make sure that we slide the interpolation index to the right.
end
% Now we interpolate!!
if isequal(keY,1)
%If a) interpolation index is less than the lowest point on the
%x-array, b) interpolation index is inbetween two points in the
%x-array and closest to the one on the left (smaller) or c)
%interpolation index is between the first and second (smallest)
%points in the x-array.
ACS_INTERP(ii) = spline(lambdA_ORGNAL(lambda_IND_LOW:lambda_IND_HI+keY),ACS_ORGNAL(lambda_IND_LOW:lambda_IND_HI+keY),lambdA_TRNSCRBE(ii));
% Slide index right one point (x-axis wise) and interpolate the data.
elseif isequal(keY,-1)
%If a) interpolation index is greater than the highest point on the
%x-array, b) interpolation index is inbetween two points in the
%x-array and closest to the one on the right (larger) or c)
%interpolation index is between the last and second to last
%(AKA largest and secodn largest) points in the x-array.
ACS_INTERP(ii) = spline(lambdA_ORGNAL(lambda_IND_LOW+keY:lambda_IND_HI),ACS_ORGNAL(lambda_IND_LOW+keY:lambda_IND_HI),lambdA_TRNSCRBE(ii));
% Slide index left one point (x-axis wise) and interpolate the data.
else
% If the interpolated point falls directly on a point in the
% x-array.
ACS_INTERP(ii) = ACS_ORGNAL(lambda_IND);
% No interpolation necessary. Use the original value.
end
end