-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdm_head.py
140 lines (123 loc) · 4.87 KB
/
dm_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, build_activation_layer, build_norm_layer
from ..builder import HEADS
from .decode_head import BaseDecodeHead
class DCM(nn.Module):
"""Dynamic Convolutional Module used in DMNet.
Args:
filter_size (int): The filter size of generated convolution kernel
used in Dynamic Convolutional Module.
fusion (bool): Add one conv to fuse DCM output feature.
in_channels (int): Input channels.
channels (int): Channels after modules, before conv_seg.
conv_cfg (dict | None): Config of conv layers.
norm_cfg (dict | None): Config of norm layers.
act_cfg (dict): Config of activation layers.
"""
def __init__(self, filter_size, fusion, in_channels, channels, conv_cfg,
norm_cfg, act_cfg):
super(DCM, self).__init__()
self.filter_size = filter_size
self.fusion = fusion
self.in_channels = in_channels
self.channels = channels
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.filter_gen_conv = nn.Conv2d(self.in_channels, self.channels, 1, 1,
0)
self.input_redu_conv = ConvModule(
self.in_channels,
self.channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
if self.norm_cfg is not None:
self.norm = build_norm_layer(self.norm_cfg, self.channels)[1]
else:
self.norm = None
self.activate = build_activation_layer(self.act_cfg)
if self.fusion:
self.fusion_conv = ConvModule(
self.channels,
self.channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def forward(self, x):
"""Forward function."""
generated_filter = self.filter_gen_conv(
F.adaptive_avg_pool2d(x, self.filter_size))
x = self.input_redu_conv(x)
b, c, h, w = x.shape
# [1, b * c, h, w], c = self.channels
x = x.view(1, b * c, h, w)
# [b * c, 1, filter_size, filter_size]
generated_filter = generated_filter.view(b * c, 1, self.filter_size,
self.filter_size)
pad = (self.filter_size - 1) // 2
if (self.filter_size - 1) % 2 == 0:
p2d = (pad, pad, pad, pad)
else:
p2d = (pad + 1, pad, pad + 1, pad)
x = F.pad(input=x, pad=p2d, mode='constant', value=0)
# [1, b * c, h, w]
output = F.conv2d(input=x, weight=generated_filter, groups=b * c)
# [b, c, h, w]
output = output.view(b, c, h, w)
if self.norm is not None:
output = self.norm(output)
output = self.activate(output)
if self.fusion:
output = self.fusion_conv(output)
return output
@HEADS.register_module()
class DMHead(BaseDecodeHead):
"""Dynamic Multi-scale Filters for Semantic Segmentation.
This head is the implementation of
`DMNet <https://openaccess.thecvf.com/content_ICCV_2019/papers/\
He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_\
ICCV_2019_paper.pdf>`_.
Args:
filter_sizes (tuple[int]): The size of generated convolutional filters
used in Dynamic Convolutional Module. Default: (1, 3, 5, 7).
fusion (bool): Add one conv to fuse DCM output feature.
"""
def __init__(self, filter_sizes=(1, 3, 5, 7), fusion=False, **kwargs):
super(DMHead, self).__init__(**kwargs)
assert isinstance(filter_sizes, (list, tuple))
self.filter_sizes = filter_sizes
self.fusion = fusion
dcm_modules = []
for filter_size in self.filter_sizes:
dcm_modules.append(
DCM(filter_size,
self.fusion,
self.in_channels,
self.channels,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
self.dcm_modules = nn.ModuleList(dcm_modules)
self.bottleneck = ConvModule(
self.in_channels + len(filter_sizes) * self.channels,
self.channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def forward(self, inputs):
"""Forward function."""
x = self._transform_inputs(inputs)
dcm_outs = [x]
for dcm_module in self.dcm_modules:
dcm_outs.append(dcm_module(x))
dcm_outs = torch.cat(dcm_outs, dim=1)
output = self.bottleneck(dcm_outs)
output = self.cls_seg(output)
return output