-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconvert.py
35 lines (26 loc) · 837 Bytes
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import tensorflow as tf
import numpy as np
from model import yolov3, yolov3_tiny
from utils.utils import load_darknet_weights
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
tiny_model = False
def main():
input_size = (416, 416, 3)
if tiny_model:
yolo = yolov3_tiny(input_size)
yolo_darknet_weights = 'model_data/yolov3_tiny.weights'
else:
yolo = yolov3(input_size)
yolo_darknet_weights = 'model_data/yolov3.weights'
yolo.summary()
print('model created')
load_darknet_weights(yolo, yolo_darknet_weights)
print('weights loaded')
img = np.random.random((1, 416, 416, 3)).astype(np.float32)
output = yolo(img)
print('sanity check passed')
yolo.save_weights('model_data/yolo_weights.h5')
print('weights saved')
if __name__ == '__main__':
main()