-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgeniepath.py
152 lines (127 loc) · 5.27 KB
/
geniepath.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
import os.path as osp
import torch
from torch_geometric.datasets import PPI
from torch_geometric.data import DataLoader
from torch_geometric.nn import GATConv
from sklearn.metrics import f1_score
#parser = argparse.ArgumentParser()
#parser.add_argument('--model', type=str, default='GeniePathLazy')
#args = parser.parse_args()
#assert args.model in ['GeniePath', 'GeniePathLazy']
#path = osp.join(osp.dirname(osp.realpath(__file__)), 'data', 'PPI')
#train_dataset = PPI(path, split='train')
#val_dataset = PPI(path, split='val')
#test_dataset = PPI(path, split='test')
#train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
#val_loader = DataLoader(val_dataset, batch_size=2, shuffle=False)
#test_loader = DataLoader(test_dataset, batch_size=2, shuffle=False)
#
#dim = 256
#lstm_hidden = 256
#layer_num = 4
class Breadth(torch.nn.Module):
def __init__(self, in_dim, out_dim):
super(Breadth, self).__init__()
self.gatconv = GATConv(in_dim, out_dim, heads=1)
def forward(self, x, edge_index, size=None):
x = torch.tanh(self.gatconv(x, edge_index, size=size))
return x
class Depth(torch.nn.Module):
def __init__(self, in_dim, hidden):
super(Depth, self).__init__()
self.lstm = torch.nn.LSTM(in_dim, hidden, 1, bias=False)
def forward(self, x, h, c):
x, (h, c) = self.lstm(x, (h, c))
return x, (h, c)
class GeniePathLayer(torch.nn.Module):
def __init__(self, in_dim, hidden):
super(GeniePathLayer, self).__init__()
self.breadth_func = Breadth(in_dim, hidden)
self.depth_func = Depth(hidden, hidden)
self.in_dim = in_dim
self.hidden = hidden
self.lstm_hidden = hidden
def forward(self, x, edge_index, size=None):
if torch.is_tensor(x):
h = torch.zeros(1, x.shape[0], self.lstm_hidden, device=x.device)
c = torch.zeros(1, x.shape[0], self.lstm_hidden, device=x.device)
else:
h = torch.zeros(1, x[1].shape[0], self.lstm_hidden, device=x[1].device)
c = torch.zeros(1, x[1].shape[0], self.lstm_hidden, device=x[1].device)
x = self.breadth_func(x, edge_index, size=size)
x = x[None, :]
x, (h, c) = self.depth_func(x, h, c)
x = x[0]
return x
class GeniePath(torch.nn.Module):
def __init__(self, in_dim, out_dim):
super(GeniePath, self).__init__()
self.lin1 = torch.nn.Linear(in_dim, dim)
self.gplayers = torch.nn.ModuleList([GeniePathLayer(dim) for i in range(layer_num)])
self.lin2 = torch.nn.Linear(dim, out_dim)
def forward(self, x, edge_index, size=None):
x = self.lin1(x)
h = torch.zeros(1, x.shape[0], lstm_hidden, device=x.device)
c = torch.zeros(1, x.shape[0], lstm_hidden, device=x.device)
for i, l in enumerate(self.gplayers):
x, (h, c) = self.gplayers[i](x, edge_index, h, c)
x = self.lin2(x)
return x
class GeniePathLazy(torch.nn.Module):
def __init__(self, in_dim, out_dim):
super(GeniePathLazy, self).__init__()
self.lin1 = torch.nn.Linear(in_dim, dim)
self.breadths = torch.nn.ModuleList(
[Breadth(dim, dim) for i in range(layer_num)])
self.depths = torch.nn.ModuleList(
[Depth(dim * 2, lstm_hidden) for i in range(layer_num)])
self.lin2 = torch.nn.Linear(dim, out_dim)
def forward(self, x, edge_index):
x = self.lin1(x)
h = torch.zeros(1, x.shape[0], lstm_hidden, device=x.device)
c = torch.zeros(1, x.shape[0], lstm_hidden, device=x.device)
h_tmps = []
for i, l in enumerate(self.breadths):
h_tmps.append(self.breadths[i](x, edge_index))
x = x[None, :]
for i, l in enumerate(self.depths):
in_cat = torch.cat((h_tmps[i][None, :], x), -1)
x, (h, c) = self.depths[i](in_cat, h, c)
x = self.lin2(x[0])
return x
#device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#kwargs = {'GeniePath': GeniePath, 'GeniePathLazy': GeniePathLazy}
#model = kwargs[args.model](train_dataset.num_features,
# train_dataset.num_classes).to(device)
#loss_op = torch.nn.BCEWithLogitsLoss()
#optimizer = torch.optim.Adam(model.parameters(), lr=0.005)
def train():
model.train()
total_loss = 0
for data in train_loader:
num_graphs = data.num_graphs
data.batch = None
data = data.to(device)
optimizer.zero_grad()
loss = loss_op(model(data.x, data.edge_index), data.y)
total_loss += loss.item() * num_graphs
loss.backward()
optimizer.step()
return total_loss / len(train_loader.dataset)
def test(loader):
model.eval()
ys, preds = [], []
for data in loader:
ys.append(data.y)
with torch.no_grad():
out = model(data.x.to(device), data.edge_index.to(device))
preds.append((out > 0).float().cpu())
y, pred = torch.cat(ys, dim=0).numpy(), torch.cat(preds, dim=0).numpy()
return f1_score(y, pred, average='micro') if pred.sum() > 0 else 0
#for epoch in range(1, 101):
# loss = train()
# val_f1 = test(val_loader)
# test_f1 = test(test_loader)
# print('Epoch: {:02d}, Loss: {:.4f}, Val: {:.4f}, Test: {:.4f}'.format(
# epoch, loss, val_f1, test_f1))