-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhypComEnc.py
67 lines (60 loc) · 3.34 KB
/
hypComEnc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch.nn as nn
import dgl
import torch
import torch.nn as nn
from utils.layers.hyp_layers import *
from utils.manifolds import PoincareBall
class HypComEnc(nn.Module):
def __init__(self, in_dim, hidden_dim, n_classes, max_comment_count, device, manifold, content_module, comment_curvature):
super(HypComEnc, self).__init__()
self.manifold = manifold
self.c = comment_curvature
self.conv1 = HGCNLayer(self.manifold, in_dim, hidden_dim, c_in = self.c, c_out = self.c , act = torch.tanh, dropout = 0.1, use_bias = True)
self.conv2 = HGCNLayer(self.manifold, hidden_dim, hidden_dim, c_in = self.c , c_out = self.c , act = torch.tanh, dropout = 0.1, use_bias = True)
self.max_comment_count = max_comment_count
self.hidden_dim = hidden_dim
self.device = device
self.content_module = content_module
def forward(self, g, h, subgraphs):
"""returned shape will be [batch_size, max_comments, embedding_size] i.e.
[batch_size, max_comment_count, hidden_dim] """
# Apply graph convolution and activation.
adj = g.adj().to(self.device)#finding the adjacency matrix
inp = h.to(self.device)#convertng to sparse tensor
if isinstance(self.manifold, PoincareBall):
inp = torch.cat([self.manifold.proj(self.manifold.expmap0(self.manifold.proj_tan0(i, c = self.c),
c= self.c), c=self.c).unsqueeze(0) for i in inp], axis = 0)
out, adj = self.conv1((inp, adj))
out, adj = self.conv2((out, adj))
h = out.to_dense()#converting back to dense
h = self.manifold.logmap0(self.manifold.proj(h, c = self.c), c = self.c)
#map h (which is in poincare space/euclidean) to tangential space to aggregate the node representations
if self.content_module:
with g.local_scope():
g.ndata['h'] = h
# Calculate graph representation by average readout.
unbatched = dgl.unbatch(g)
batch_agg = []
for batch_idx in range(len(unbatched)):
agg = []
for node_list in subgraphs[batch_idx]:
sub = dgl.node_subgraph(unbatched[batch_idx], node_list)
hg = dgl.mean_nodes(sub, 'h')
agg.append(torch.squeeze(hg).unsqueeze(0))
if len(agg) >= self.max_comment_count:
agg = agg[:self.max_comment_count]
agg = torch.cat([i.float() for i in agg], dim = 0)
else:
padding = torch.zeros((self.max_comment_count - len(agg), self.hidden_dim), dtype = torch.float32, requires_grad = True).to(self.device)
without_padding = torch.cat([i.float() for i in agg], dim = 0)
agg = torch.cat([without_padding, padding], dim = 0)
agg = self.manifold.proj(self.manifold.expmap0(agg, c = self.c), c = self.c)
batch_agg.append(agg.unsqueeze(0))
ret = torch.cat(batch_agg, dim = 0)
return ret
else:
with g.local_scope():
g.ndata['h'] = h
ret = dgl.mean_nodes(g, 'h')
ret = self.manifold.proj(self.manifold.expmap0(ret, c = self.c), c = self.c)
return ret