-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathc4_dataset.py
168 lines (138 loc) · 5.56 KB
/
c4_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
import torch
from datasets import Dataset, concatenate_datasets
from torch.utils.data import DataLoader
from torch.utils.data import Dataset as TorchDataset
from torch.utils.data import DistributedSampler
def set_seed(seed):
np.random.seed(seed)
torch.random.manual_seed(seed)
def get_wikitext2(nsamples, seed, seqlen, model):
from datasets import load_dataset
traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='train')
testdata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False)
trainenc = tokenizer(' '.join(traindata['text']), return_tensors='pt')
testenc = tokenizer('\n\n'.join(testdata['text']), return_tensors='pt')
import random
random.seed(seed)
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader, testenc
def get_ptb(nsamples, seed, seqlen, model):
from datasets import load_dataset
traindata = load_dataset('ptb_text_only', 'penn_treebank', split='train')
testdata = load_dataset('ptb_text_only', 'penn_treebank', split='test')
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False)
trainenc = tokenizer(' '.join(traindata['sentence']), return_tensors='pt')
testenc = tokenizer(' '.join(testdata['sentence']), return_tensors='pt')
import random
random.seed(seed)
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader, testenc
def get_c4(nsamples, seed, seqlen, model):
from datasets import load_dataset
traindata = load_dataset(
'allenai/c4',
'allenai--c4',
data_files={'train': 'en/c4-train.00000-of-01024.json.gz'},
split='train')
valdata = load_dataset(
'allenai/c4',
'allenai--c4',
data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'},
split='validation')
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False)
import random
random.seed(seed)
trainloader = []
for _ in range(nsamples):
while True:
i = random.randint(0, len(traindata) - 1)
trainenc = tokenizer(traindata[i]['text'], return_tensors='pt')
if trainenc.input_ids.shape[1] >= seqlen:
break
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
valenc = tokenizer(' '.join(valdata[:1100]['text']), return_tensors='pt')
valenc = valenc.input_ids[:, :(256 * seqlen)]
class TokenizerWrapper:
def __init__(self, input_ids):
self.input_ids = input_ids
valenc = TokenizerWrapper(valenc)
return trainloader, valenc
def get_loaders(name, nsamples=128, seed=0, seqlen=2048, model=''):
if 'wikitext2' in name:
return get_wikitext2(nsamples, seed, seqlen, model)
if 'ptb' in name:
return get_ptb(nsamples, seed, seqlen, model)
if 'c4' in name:
return get_c4(nsamples, seed, seqlen, model)
def fold_tokens(tokens: torch.Tensor, batch_seq_len=2048):
# tokens: 1 N
N = tokens.shape[1]
num_drop = N % batch_seq_len
if num_drop != 0:
tokens = tokens[:, :-num_drop]
tokens = tokens.reshape([-1, batch_seq_len]) # B N
return tokens
class LanguageDataset(TorchDataset):
def __init__(self,
seq: torch.Tensor,
labels=None,
seq_len: int = 2048) -> None:
super().__init__()
# seq: 1, N
self.seq_len = seq_len
if isinstance(seq, list):
self.seq = seq
else:
self.seq = fold_tokens(seq, batch_seq_len=self.seq_len) # B N
if labels is None:
labels = self.seq.clone()
labels[:, :-1] = -100
self.labels = labels
def __len__(self) -> int:
return len(self.seq)
def __getitem__(self, index):
# return self.seq[index]
return dict(
input_ids=self.seq[index].squeeze(),
labels=self.labels[index].squeeze()
if self.labels is not None else None,
)
def build_language_loader(testloader, world_size, rank, model, batch_size=128):
val_dataset = LanguageDataset(testloader.input_ids, seq_len=model.seqlen)
distributed_sampler = DistributedSampler(val_dataset,
num_replicas=world_size,
rank=rank,
shuffle=False)
batch_size = min(len(val_dataset) // world_size, batch_size)
val_dataloader = DataLoader(val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=0,
pin_memory=True,
drop_last=True,
sampler=distributed_sampler)
return val_dataloader