-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput_attempt_2.xml
123 lines (114 loc) · 3.21 KB
/
input_attempt_2.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
<?xml version="1.0"?>
<fit>
<combined_model>
<parse_model>
<n_variables>1</n_variables>
<n_functions>1</n_functions>
<variables>
<variable>
<number>1</number>
<name>t</name>
</variable>
</variables>
<constants>
<name>T</name>
</constants>
<fit_domain>
<variable_name>t</variable_name>
<range>
<min>8</min>
<max>12</max>
</range>
</fit_domain>
<functions>
<function>
<number>1</number>
<definition>A0*exp(-E0*t)+A1*exp(-(E0+E1)*t)</definition>
</function>
</functions>
<parameters>
<name>A0</name>
<name>E0</name>
<name>A1</name>
<name>E1</name>
</parameters>
<data_file>
<file_type>ASCII</file_type>
<file_name>./for_xmbf_tmp</file_name>
</data_file>
</parse_model>
</combined_model>
<fit_settings>
<restrict_data_range>false</restrict_data_range>
<data_range_min>1</data_range_min>
<data_range_max>1000</data_range_max>
<chi_sqr_extra_term_enabled>false</chi_sqr_extra_term_enabled>
<bayesian>true</bayesian>
<num_diff_first_order>true</num_diff_first_order>
<second_deriv_covariance>true</second_deriv_covariance>
<second_deriv_minimization>false</second_deriv_minimization>
<num_diff_step>1e-09</num_diff_step>
<random_priors>false</random_priors>
<start_lambda>0.001</start_lambda>
<lambda_factor>10</lambda_factor>
<chi_sqr_tolerance>0.0001</chi_sqr_tolerance>
<chi_sqr_per_dof_tolerance>false</chi_sqr_per_dof_tolerance>
<bootstrap_normalization>false</bootstrap_normalization>
<inversion_method>svd_ratio_cut</inversion_method>
<svd_fixed_cut>0</svd_fixed_cut>
<svd_ratio_cut>1e-10</svd_ratio_cut>
<svd_absolute_cut>1e-12</svd_absolute_cut>
<max_iterations>1000</max_iterations>
<bin_size>1</bin_size>
<bootstrap_samples>100</bootstrap_samples>
<use_bse_file>false</use_bse_file>
<bse_file></bse_file>
<restrict_bootstrap_range>false</restrict_bootstrap_range>
<bootstrap_range_min>1</bootstrap_range_min>
<bootstrap_range_max>50</bootstrap_range_max>
</fit_settings>
<parameter_values>
<parameter>
<name>E0</name>
<start_value>0.5</start_value>
<prior>0.22</prior>
<prior_width>1e-2</prior_width>
</parameter>
<parameter>
<name>E1</name>
<start_value>0.5</start_value>
<prior>0.22</prior>
<prior_width>1e-2</prior_width>
</parameter>
<parameter>
<name>E2</name>
<start_value>0.5</start_value>
<prior>0.22</prior>
<prior_width>1e-2</prior_width>
</parameter>
<parameter>
<name>A0</name>
<start_value>1</start_value>
<prior>0.22</prior>
<prior_width>1e-2</prior_width>
</parameter>
<parameter>
<name>A1</name>
<start_value>1</start_value>
<prior>0.22</prior>
<prior_width>1e-2</prior_width>
</parameter>
<parameter>
<name>A2</name>
<start_value>1</start_value>
<prior>0.22</prior>
<prior_width>1e-2</prior_width>
</parameter>
</parameter_values>
<constant_values>
<constant>
<name>T</name>
<value>64</value>
</constant>
</constant_values>
</fit>