forked from GreenleafLab/MPAL-Single-Cell-2019
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscRNA_01_Clustering_UMAP_v1.R
305 lines (261 loc) · 9.58 KB
/
scRNA_01_Clustering_UMAP_v1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#Clustering and scRNA-seq UMAP for Hematopoiesis data
#06/02/19
#Cite Granja*, Klemm*, Mcginnis* et al.
#A single cell framework for multi-omic analysis of disease identifies
#malignant regulatory signatures in mixed phenotype acute leukemia (2019)
#Created by Jeffrey Granja
library(Matrix)
library(SummarizedExperiment)
library(tidyverse)
library(uwot)
library(edgeR)
library(matrixStats)
library(Rcpp)
set.seed(1)
####################################################
#Functions
####################################################
#Binarize Sparse Matrix
binarizeMat <- function(mat){
mat@x[mat@x > 0] <- 1
mat
}
#LSI Adapted from fly-atac with information for re-projection analyses
calcLSI <- function(mat, nComponents = 50, binarize = TRUE, nFeatures = NULL){
set.seed(1)
#TF IDF LSI adapted from flyATAC
if(binarize){
message(paste0("Binarizing matrix..."))
mat@x[mat@x > 0] <- 1
}
if(!is.null(nFeatures)){
message(paste0("Getting top ", nFeatures, " features..."))
idx <- head(order(Matrix::rowSums(mat), decreasing = TRUE), nFeatures)
mat <- mat[idx,]
}else{
idx <- which(Matrix::rowSums(mat) > 0)
mat <- mat[idx,]
}
#Calc RowSums and ColSums
colSm <- Matrix::colSums(mat)
rowSm <- Matrix::rowSums(mat)
#Calc TF IDF
message("Computing Term Frequency IDF...")
freqs <- t(t(mat)/colSm)
idf <- as(log(1 + ncol(mat) / rowSm), "sparseVector")
tfidf <- as(Matrix::Diagonal(x=as.vector(idf)), "sparseMatrix") %*% freqs
#Calc SVD then LSI
message("Computing SVD using irlba...")
svd <- irlba::irlba(tfidf, nComponents, nComponents)
svdDiag <- matrix(0, nrow=nComponents, ncol=nComponents)
diag(svdDiag) <- svd$d
matSVD <- t(svdDiag %*% t(svd$v))
rownames(matSVD) <- colnames(mat)
colnames(matSVD) <- paste0("PC",seq_len(ncol(matSVD)))
#Return Object
out <- list(
matSVD = matSVD,
rowSm = rowSm,
colSm = colSm,
idx = idx,
svd = svd,
binarize = binarize,
nComponents = nComponents,
date = Sys.Date(),
seed = 1)
out
}
#Clustering function using seurat SNN (Seurat v2.3.4)
seuratSNN <- function(matSVD, dims.use = 1:50, ...){
set.seed(1)
message("Making Seurat Object...")
mat <- matrix(rnorm(nrow(matSVD) * 3, 1000), ncol = nrow(matSVD), nrow = 3)
colnames(mat) <- rownames(matSVD)
obj <- Seurat::CreateSeuratObject(mat, project='scATAC', min.cells=0, min.genes=0)
obj <- Seurat::SetDimReduction(object = obj, reduction.type = "pca", slot = "cell.embeddings", new.data = matSVD)
obj <- Seurat::SetDimReduction(object = obj, reduction.type = "pca", slot = "key", new.data = "PC")
obj <- Seurat::FindClusters(object = obj, reduction.type = "pca", dims.use = dims.use, print.output = TRUE, ...)
clust <- obj@meta.data[,ncol(obj@meta.data)]
paste0("Cluster",match(clust, unique(clust)))
}
#Sparse Variances Rcpp
sourceCpp(code='
#include <Rcpp.h>
using namespace Rcpp;
using namespace std;
// [[Rcpp::export]]
Rcpp::NumericVector computeSparseRowVariances(IntegerVector j, NumericVector val, NumericVector rm, int n) {
const int nv = j.size();
const int nm = rm.size();
Rcpp::NumericVector rv(nm);
Rcpp::NumericVector rit(nm);
int current;
// Calculate RowVars Initial
for (int i = 0; i < nv; ++i) {
current = j(i) - 1;
rv(current) = rv(current) + (val(i) - rm(current)) * (val(i) - rm(current));
rit(current) = rit(current) + 1;
}
// Calculate Remainder Variance
for (int i = 0; i < nm; ++i) {
rv(i) = rv(i) + (n - rit(i))*rm(i)*rm(i);
}
rv = rv / (n - 1);
return(rv);
}'
)
#Compute Fast Sparse Row Variances
sparseRowVariances <- function (m){
rM <- Matrix::rowMeans(m)
rV <- computeSparseRowVariances(m@i + 1, m@x, rM, ncol(m))
return(rV)
}
#Helper function for summing sparse matrix groups
groupSums <- function (mat, groups = NULL, na.rm = TRUE, sparse = FALSE){
stopifnot(!is.null(groups))
stopifnot(length(groups) == ncol(mat))
gm <- lapply(unique(groups), function(x) {
if (sparse) {
Matrix::rowSums(mat[, which(groups == x), drop = F], na.rm = na.rm)
}
else {
rowSums(mat[, which(groups == x), drop = F], na.rm = na.rm)
}
}) %>% Reduce("cbind", .)
colnames(gm) <- unique(groups)
return(gm)
}
#Optimized LSI for scRNA-seq analysis
optimizeLSI <- function(mat, scaleTo = 10000, priorCount = 3, pcsUse = 1:25,
resolution = c(0.2, 0.4, 0.8), varFeatures = c(2500, 2500, 2500), seed = 1){
set.seed(seed)
stopifnot(length(resolution) > 1)
#Initialize List
lsiOut <- list()
#Initial LSI uses variances that are across all single cells and will have larger batch relationships
i <- 1
message("Initial LSI...")
matNorm <- t(t(mat)/Matrix::colSums(mat)) * scaleTo
matNorm@x <- log2(matNorm@x + 1)
idVarFeatures <- head(order(sparseRowVariances(matNorm),decreasing=TRUE), varFeatures[i])
lsiObj <- calcLSI(mat[idVarFeatures,], binarize = FALSE, nComponents = max(pcsUse))
clusters <- seuratSNN(lsiObj$matSVD, dims.use = pcsUse, resolution = resolution[i], n.start = 10, print.output = FALSE)
#Store
lsiOut[[paste0("iter", i)]] <- list(
lsiMat = lsiObj$matSVD,
varFeatures = idVarFeatures,
clusters = clusters
)
for(i in seq(2, length(varFeatures))){
message(sprintf("Additional LSI %s...", i))
#Run LSI
clusterMat <- edgeR::cpm(groupSums(mat, clusters, sparse = TRUE), log=TRUE, prior.count = priorCount)
idVarFeatures <- head(order(rowVars(clusterMat), decreasing=TRUE), varFeatures[i])
lsiObj <- calcLSI(mat[idVarFeatures,], binarize = FALSE, nComponents = max(pcsUse))
clusters <- seuratSNN(lsiObj$matSVD, dims.use = pcsUse, resolution = resolution[i], n.start = 10, print.output = FALSE)
if(i == length(varFeatures)){
#Save All Information from LSI Attempt
lsiOut[[paste0("iter", i)]] <- list(
lsiObj = lsiObj,
varFeatures = idVarFeatures,
clusters = clusters,
matNorm = matNorm
)
}else{
lsiOut[[paste0("iter", i)]] <- list(
lsiMat = lsiObj$matSVD,
varFeatures = idVarFeatures,
clusters = clusters
)
}
}
return(lsiOut)
}
####################################################
#Input Data
####################################################
#Read in Summarized Experiment
#Please Note Code here has been modified to work with finalized summarized experiment
se <- readRDS("data/Supplementary_Data_Hematopoiesis/scRNA-Healthy-Hematopoiesis-190429.rds")
####################################################
#For Clustering Analysis Start Here
####################################################
nPCs <- 1:25 #Number of PCs for clustering
nTop <- c(3000, 3000, 3000) #Choose a higher number of variable peaks
resolution <- c(0.2,0.6,1.0) #Clustering resolutions for Seurat SNN
#Optimize LSI Features
lsiObj <- optimizeLSI(assay(se),
resolution = resolution,
pcsUse = nPCs,
varFeatures = nTop)
metadata(se)$optimizeLSI <- lsiObj
metadata(se)$matSVD <- lsiObj[[length(lsiObj)]][[1]][[1]] #Last one
metadata(se)$variableGenes <- rownames(se)[lsi[[length(lsi)]]$varFeatures] #Variable genes
####################################################
#For Creating UMAP Start Here
####################################################
matSVD <- metadata(se)$matSVD
clusters <- colData(se)$Clusters
#Set Seed and perform UMAP on LSI-SVD Matrix
set.seed(1)
uwotUmap <- uwot::umap(
matSVD,
n_neighbors = 35,
min_dist = 0.45,
metric = "euclidean",
n_threads = 1,
verbose = TRUE,
ret_nn = TRUE,
ret_model = TRUE
)
pdf("Plot_UMAP-NN-35-MD-45.pdf", width = 12, height = 12, useDingbats = FALSE)
df <- data.frame(
x = uwotUmap[[1]][,1],
y = -uwotUmap[[1]][,2],
color = clusters
)
ggplot(df,aes(x,y,color=color)) +
geom_point() +
theme_bw() +
scale_color_manual(values=metadata(se)$colorMap$Clusters) +
xlab("UMAP Dimension 1") +
ylab("UMAP Dimension 2")
dev.off()
#Add UMAP coordinates to column data in summarized experiment
colData(se)$UMAP1 <- uwotUmap[[1]][,1]
colData(se)$UMAP2 <- uwotUmap[[1]][,2]
#Save Summarized Experiment
#Add UMAP Params
metadata(se)$UMAP_Params <- list(NN = 35, MD = 0.45, PCs = 1:25, VarGenes = 3000, Res = "2.6.10")
saveRDS(se, "results/scRNA-Healthy-Hematopoiesis.rds")
#Save UMAP embedding
save_uwot(uwotUmap, "results/scRNA-Hematopoiesis-UMAP-model.uwot")
#If the above code does not work because tarring doesnt work for some reason on Stanford's compute server
#The following code will do a similar job assumming system commands work
#Adapted from save_uwot
model <- uwotUmap
file <- "results/scRNA-Hematopoiesis-UMAP-model.uwot.tar"
mod_dir <- tempfile(pattern = "dir")
dir.create(mod_dir)
uwot_dir <- file.path(mod_dir, "uwot")
dir.create(uwot_dir)
model_tmpfname <- file.path(uwot_dir, "model")
saveRDS(model, file = model_tmpfname)
metrics <- names(model$metric)
n_metrics <- length(metrics)
for (i in 1:n_metrics) {
nn_tmpfname <- file.path(uwot_dir, paste0("nn", i))
if (n_metrics == 1) {
model$nn_index$save(nn_tmpfname)
model$nn_index$unload()
model$nn_index$load(nn_tmpfname)
}
else {
model$nn_index[[i]]$save(nn_tmpfname)
model$nn_index[[i]]$unload()
model$nn_index[[i]]$load(nn_tmpfname)
}
}
setwd(mod_dir)
system(sprintf("tar -cvf %s%s %s", wd, file, "uwot/*"))
setwd(wd)