-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy paththresholding.py
154 lines (118 loc) · 5.22 KB
/
thresholding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import time
test_list = [-1, 0, 1, 2, 3, 5, 7, 999]
thresholds = np.load("MultiThreshold_0_param0.npy")
thresholds = np.reshape(thresholds, thresholds.shape[0]*thresholds.shape[1])
print(thresholds[0])
print(thresholds[255])
print(thresholds[254])
print(thresholds[509])
def upper_bound(li, val):
count = len(li)
first = 0
while (count > 0):
indexptr = first
step = count // 2
indexptr += step
if (not (val < li[indexptr])):
indexptr += 1
first = indexptr
count -= step + 1
else:
count = step
return first
def multithreshold(elemcount, inp):
ret = [-128] * len(inp)
if (elemcount == len(inp)):
# case batchsize 1
for elemindex in range(elemcount):
ret[elemindex] += upper_bound(thresholds[elemindex *
255:(elemindex+1) * 255], inp[elemindex])
else:
# case all other batch sizes
for elemindex in range(elemcount):
last = -float("inf")
indexLast = 0
for batchindex in range(len(inp)//elemcount):
curr = inp[batchindex * elemcount + elemindex]
indexCurr = 0
if (curr == last):
indexCurr = indexLast
elif (curr > last):
indexCurr = upper_bound(
thresholds[elemindex * 255 + indexLast:(elemindex+1) * 255], curr)
indexCurr += indexLast
else:
indexCurr = upper_bound(
thresholds[elemindex * 255:(elemindex+1) * 255 - (255 - indexLast)], curr)
ret[batchindex * elemcount + elemindex] += indexCurr
last = curr
indexLast = indexCurr
return ret
"""constinit float a = 255 / (thresholds[254] - thresholds[0]);
std::vector<int8_t> multithresholdLinearPerTensor(const std::vector<float>& inp) {
const size_t size = inp.size();
std::vector<int8_t> ret(size, -128);
std::vector<int> protoRet(size);
std::size_t threadcount = std::min({ 24ul ,static_cast<std::size_t>(omp_get_num_procs()), FinnUtils::fastLog2(inp.size() >> 4) });
omp_set_num_threads(threadcount);
#pragma omp for simd
for (size_t i = 0; i < size; ++i) {
protoRet[i] = std::clamp(static_cast<int>((inp[i] - thresholds[0]) * a), 0, 254);
}
#pragma omp simd
for (size_t i = 0; i < size; ++i) {
const int val = protoRet[i];
ret[i] += static_cast<int>(inp[i] - thresholds[val] + 1.0f) + val;
}
return ret;
}"""
a = 255 / (thresholds[254] - thresholds[0])
def clamp(val, ul, ll):
temp = val + ul - abs(val - ul)
if ll == 0:
return int((temp + abs(temp))*0.25)
else:
lowerTimes2 = 2*ll
return int((temp + lowerTimes2 + abs(temp - lowerTimes2)) * 0.25)
def multithresholdLinearPerTensor(inp):
size = len(inp)
ret = [-128] * size
for i in range(size):
temp = clamp(int((inp[i] - thresholds[0]) * a), 254, 0)
ret[i] += int(inp[i] - thresholds[temp] + 1.0) + temp
return ret
testinputs = [0.5527185, 0.39846906, -0.11766014, 0.19299345, -0.38549745, 0.08441927, 0.26880047, 0.42681944, -0.10539523, -0.02164167, 0.41527015, -
0.09802981, -0.07409753, -0.41598308, 0.09711669, -0.11594991, -0.4557323, 0.27337435, -0.11517189, 0.37859723, -0.15901394, 0.29185423, -0.344608, 0.08293352]
print(multithreshold(24, testinputs))
testinputs = testinputs * 4
print(multithreshold(24, testinputs))
# print(upper_bound(test_list, 0))
# print(upper_bound(test_list, 2))
# print(upper_bound(test_list, 66))
inp = [-0.021009455, 0.019932786, -0.039395217, 0.18287413, 0.00012183236, -0.032901216, 0.25017667, -0.022611154, 0.00185829, 0.020921344, 0.012650512, -0.04234076, -0.051785916, -0.061475027, -0.004451474, 0.62080276, -0.014915439, 0.029105086, 0.7079885, 0.026286222, 0.0018582224, -0.13297302, -0.007866903, 0.037671357, 0.64609253, -0.010580023, -0.045337804, -0.13296913, -0.032439955, -0.021977415, -0.1267499, -0.057640415, -0.05359094, 0.17047033, -0.017160123, -
0.06444771, 1.4546201, -0.029384447, -0.052251257, -0.161837, 0.076085255, 0.28753442, -0.111458495, -0.04988761, -0.053051833, -0.07829765, 0.0317371, -0.06444789]
expectedOut = [27.0, 0.0, -2.0, -6.0, -1.0, -1.0, -5.0, -2.0, -2.0, 7.0, -
1.0, -3.0, 60.0, -1.0, -2.0, -7.0, 3.0, 12.0, -5.0, -2.0, -2.0, -3.0, 1.0, -3.0]
print(multithreshold(24, inp))
print(multithresholdLinearPerTensor(inp))
randomInputs = (4 - -4) * np.random.random((4096*24)) - 4
print(type(randomInputs))
# print(multithreshold(24, randomInputs))
timecounter = 0
for t in range(1000):
start = time.perf_counter()
multithreshold(24, randomInputs)
stop = time.perf_counter()
timecounter += stop - start
print(timecounter/1000)
randomInputs = (4 - -4) * np.random.random((4096*24)) - 4
print(type(randomInputs))
# print(multithreshold(24, randomInputs))
timecounter = 0
for t in range(1000):
start = time.perf_counter()
multithresholdLinearPerTensor(randomInputs)
stop = time.perf_counter()
timecounter += stop - start
print(timecounter/1000)