-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeneral_tunnel_potential.f90
285 lines (285 loc) · 11.6 KB
/
general_tunnel_potential.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
!
! hydrogen-tunnel: Static-field tunneling in a central potential
! Copyright (C) 2018-2022 Serguei Patchkovskii, Serguei.Patchkovskii@mbi-berlin.de
!
! This program is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program. If not, see <https://www.gnu.org/licenses/>.
!
! Central potentials for use with general_tunnel.f90 and friemds
!
module general_tunnel_potential
use accuracy
use constants
use general_tunnel_data
use math
use poly_tools
use timer
!$ use OMP_LIB
implicit none
private
! public potential_u_r ! We should not use u(r) - this is just one special case of the general
! ! u(eta,xi) that we can handle in the code!
public potential_u_halfx2, check_asymptotic_potential
public cache_potential
public rcsid_general_tunnel_potential
!
character(len=clen), save :: rcsid_general_tunnel_potential = "$Id: $"
!
! Parameter tables from Tong and Lin, J Phys B 38, 2593 (2005), except for Xe, which is
! from Zhang, Lan, and Lu, Phys Rev A 90, 043410 (2014).
!
! The potential is in the form: -(1/r)*(Z + a1*exp(-a2*r) + a3*r*exp(-a4*r) + a5*exp(-a6*r) + a7*r**2*exp(-a8*r))
!
! The last term is not actually in Tong&Lin.
!
! Zc a1 a2 a3 a4 a5 a6 a7 a8
real(rk), parameter :: tong05_he(0:8) = (/ 1.0_rk, 1.231_rk, 0.662_rk, -1.325_rk, 1.236_rk, -0.231_rk, 0.480_rk, 0._rk, 1._rk /)
real(rk), parameter :: tong05_ne(0:8) = (/ 1.0_rk, 8.069_rk, 2.148_rk, -3.570_rk, 1.986_rk, 0.931_rk, 0.602_rk, 0._rk, 1._rk /)
real(rk), parameter :: tong05_ar(0:8) = (/ 1.0_rk, 16.039_rk, 2.007_rk, -25.543_rk, 4.525_rk, 0.961_rk, 0.443_rk, 0._rk, 1._rk /)
real(rk), parameter :: tong05_xe(0:8) = (/ 1.0_rk, 51.356_rk, 2.112_rk, -99.927_rk, 3.737_rk, 1.644_rk, 0.431_rk, 0._rk, 0._rk /)
real(rk), parameter :: test_he (0:8) = (/ 1.0_rk, 1.000_rk, 2.1325_rk, 0.000_rk, 0.000_rk, 0.000_rk, 0.000_rk, 0._rk, 0._rk /)
real(rk), parameter :: test_3he (0:8) = (/ 1.0_rk, 1.2407_rk, 1.6527_rk, 0.000_rk, 0.000_rk, 0.000_rk, 0.000_rk, 0._rk, 0._rk /)
real(rk), parameter :: muller_ar(0:8) = (/ 1.0_rk, 5.4_rk, 1.0000_rk, 0.000_rk, 0.000_rk, 11.600_rk, 3.682_rk, 0._rk, 0._rk /)
!
real(rk), parameter :: sfg99_li(0:8) = (/ 1.0, 2.0, 3.395, 3.212, 3.207, 0., 0., 0., 0. /)
real(rk), parameter :: sfg99_na(0:8) = (/ 1.0, 10.0, 7.902, 23.51 , 2.688, 0., 0., 0., 0. /)
real(rk), parameter :: sfg99_k (0:8) = (/ 1.0, 18.0, 3.491, 10.591, 1.730, 0., 0., 0., 0. /)
real(rk), parameter :: sfg99_rb(0:8) = (/ 1.0, 36.0, 3.431, 10.098, 1.611, 0., 0., 0., 0. /)
real(rk), parameter :: sfg99_cs(0:8) = (/ 1.0, 54.0, 3.294, 11.005, 1.509, 0., 0., 0., 0. /)
!
contains
!
! Evaluate the quantity:
!
! (1/m!) (d^m/d r^m) r^n exp(-alpha r)
!
! We'll use recursions to get there :)
!
subroutine rexptab(nmax,mmax,r,alpha,rtab)
integer(ik), intent(in) :: nmax ! Desired order of the polynomial term (must be >= 0)
integer(ik), intent(in) :: mmax ! Maximum desired order of the derivative (min is 0)
real(rk), intent(in) :: r ! Point at which we evaluate the derivatives
real(rk), intent(in) :: alpha ! The exponent
real(rk), intent(out) :: rtab(0:mmax)
!
integer(ik) :: n, m
real(rk) :: tab(0:nmax,0:mmax)
!
if (nmax<0 .or. mmax<0) stop 'general_tunnel%rexptab - bad arguments'
!
if (alpha*r>=log(sqrt(huge(1._rk)))) then
tab(0,0) = 0._rk
else
tab(0,0) = exp(-alpha*r)
end if
!
power_only: do n=1,nmax
tab(n,0) = r * tab(n-1,0)
end do power_only
!
order_only: do m=1,mmax
tab(0,m) = (-alpha/real(m,kind=rk)) * tab(0,m-1)
end do order_only
!
order: do m=1,mmax
power: do n=1,nmax
tab(n,m) = (real(n,kind=rk)/real(m,kind=rk)) * tab(n-1,m-1) &
- (alpha/real(m,kind=rk)) * tab(n,m-1)
end do power
end do order
rtab(:) = tab(nmax,:)
end subroutine rexptab
!
subroutine tong05(a,order,r0,ptab)
real(rk), intent(in) :: a(0:8) ! Parameters of the potential; see comment above
integer(ik), intent(in) :: order
real(rk), intent(in) :: r0
real(rk), intent(out) :: ptab(0:order)
real(rk) :: term(0:order)
!
! We can synthesize Tong05 potentials from the generalized Yukawa terms
! provided by rexptab above.
!
if (znuc/=a(0)) then
write (out,"('ERROR: znuc (',g0.12,') does not match long-range part of the potential (',g0.12,')')") znuc, a(0)
stop 'general_tunnel_potential%tong05 - bad znuc'
end if
call rexptab(0_ik,order,r0,a(2),term) ; ptab(:) = a(1) * term(:)
call rexptab(1_ik,order,r0,a(4),term) ; ptab(:) = ptab(:) + a(3) * term(:)
call rexptab(0_ik,order,r0,a(6),term) ; ptab(:) = ptab(:) + a(5) * term(:)
call rexptab(2_ik,order,r0,a(8),term) ; ptab(:) = ptab(:) + a(7) * term(:)
end subroutine tong05
!
! Our internal representation of the potential is in terms of (u), defined as:
!
! u(r) = -r*v(r) - znuc
!
! where v(r) is the potential (attractive=negative), and znuc is the long-range
! Coulombic part. Thus, a purely Coulombic potential gives u(r)=0. All other
! physical potentials we are concerned with give short-range u(r).
!
subroutine potential_u_r(r0,order,ptab)
real(rk), intent(in) :: r0
integer(ik), intent(in) :: order ! Desired derivative order
real(rk), intent(out) :: ptab(0:order) ! ptab(n) = n! d^n u(r)/d r^n, so that
! u(r-r0) = Sum ptab(n) (r-r0)^n
real(rk) :: lp(0:order)
!
select case (potential)
case default
write (out,"('Potential ',a,' is not implemented')") trim(potential)
stop 'general_tunnel%potential_u - unknown potential'
case ('hydrogenic')
ptab = 0.0
case ('yukawa')
!
! v(r) = a0*r**n1*exp(-a1*r)
!
ptab(:) = 0
if (pot_param_real(1)/=0._rk) then
call rexptab(pot_param_int(1)+1_ik,order,r0,pot_param_real(2),lp)
ptab(:) = ptab(:) -pot_param_real(1) * lp(:)
end if
if (pot_param_real(3)/=0._rk) then
call rexptab(pot_param_int(2)+1_ik,order,r0,pot_param_real(4),lp)
ptab(:) = ptab(:) -pot_param_real(3) * lp(:)
end if
if (pot_param_real(5)/=0._rk) then
call rexptab(pot_param_int(3)+1_ik,order,r0,pot_param_real(6),lp)
ptab(:) = ptab(:) -pot_param_real(5) * lp(:)
end if
case ('[Tong05] He')
call tong05(tong05_he,order,r0,ptab)
case ('[Tong05] Ne')
call tong05(tong05_ne,order,r0,ptab)
case ('[Tong05] Ar')
call tong05(tong05_ar,order,r0,ptab)
case ('[Tong05] Xe')
call tong05(tong05_xe,order,r0,ptab)
case ('[SFG99] Li')
call tong05(sfg99_li,order,r0,ptab)
case ('[SFG99] Na')
call tong05(sfg99_na,order,r0,ptab)
case ('[SFG99] K' )
call tong05(sfg99_k, order,r0,ptab)
case ('[SFG99] Rb')
call tong05(sfg99_rb,order,r0,ptab)
case ('[SFG99] Cs')
call tong05(sfg99_cs,order,r0,ptab)
case ('Test He')
call tong05(test_he,order,r0,ptab)
case ('Test 3He')
call tong05(test_3he,order,r0,ptab)
case ('argon')
call tong05(muller_ar,order,r0,ptab)
end select
end subroutine potential_u_r
!
! Radial integration from the origin requires power series with respect
! to a different parameter:
!
! r+dr = 0.5*eta**2 + 0.5*(x+dx)**2
!
! Evaluate the corresponding coefficients using chain rule.
!
subroutine potential_u_halfx2(eta,x0,order,ptab)
real(rk), intent(in) :: eta ! The value of the orthogonal parameter
real(rk), intent(in) :: x0 ! Expansion point
integer(ik), intent(in) :: order ! Desired derivative order
real(rk), intent(out) :: ptab(0:order) ! ptab(n) = n! d^n u(0.5*x**2)/d x^n, so that
! u(x-x0) = Sum ptab(n) (x-x0)^n
!
integer(ik) :: m, k
real(rk) :: prtab(0:order)
real(rk) :: logx0, log2
real(rk) :: fact
!
call potential_u_r(0.5_rk*(eta**2+x0**2),order,prtab)
if (x0==0._rk) then
!
! x0 = 0 requires special treatment in the chain rule
!
ptab(:) = 0
ptab_at_zero: do m=0,order,2
ptab(m) = prtab(m/2) * 0.5_rk**(m/2)
end do ptab_at_zero
else
!
! General case
! There is a real potential for overflow here; let's use logarithmic form
!
logx0 = log(x0)
log2 = log(2._rk)
order_x: do m=0,order
ptab(m) = 0
order_r: do k=(m+1)/2,m
if (prtab(k)==0._rk) cycle order_r
fact = MathLogFactorial(k) + real(2*k-m,kind=rk)*logx0 &
- MathLogFactorial(m-k) - MathLogFactorial(2*k-m) &
- real(m-k,kind=rk)*log2
ptab(m) = ptab(m) + prtab(k)*exp(fact)
end do order_r
end do order_x
end if
end subroutine potential_u_halfx2
!
! Our potential must vanish at the matching point: asymptotic solutions
! assume purely hydrogenic potential. Although we could include the long-
! range (inverse-power of r) terms in the asymptotic solution, we can't
! handle then in the coupling equations - so there is no point in doing
! this.
!
subroutine check_asymptotic_potential
real(rk) :: ptab(0:asymp_order)
real(rk) :: max_ptab
integer(ik) :: order
!
call potential_u_halfx2(0._rk,eta_max,asymp_order,ptab)
max_ptab = maxval(abs(ptab))
if (verbose>=0) then
write (out,"('Asymptotic continuum solutions are used from point eta = ',g26.16e3)") eta_max
write (out,"('Effective potential u = -r*v(r)-Q and its derivatives at the matching point:')")
write (out,"(3x,a5,1x,a26)") 'Order', 'o! (d^o/d x^o) u(x^2/2)', &
'-----', '-----------------------'
report_potential: do order=0,asymp_order
write (out,"(3x,i5,1x,g28.16e4)") order, ptab(order)
end do report_potential
write (out,"(/'Max = ',g28.16e4/)") max_ptab
end if
if (max_ptab>spacing(1._rk)) then
write (out,"(/'WARNING: Short-range potential is not negligible at the asymptotic matching point.')")
write (out,"( 'WARNING: Diagnostic = ',g28.16e4/)") max_ptab
end if
end subroutine check_asymptotic_potential
!
subroutine cache_potential
integer(ik) :: xi_pt, eta_pt
real(rk) :: eta, xi
!
call TimerStart('Cache potential')
!
!$omp parallel do collapse(2) default(none) &
!$omp& shared(eta_npts,xi_npts,xi_maxorder,eta_tab,xi_tab,tab_u_halfx2) &
!$omp& private(eta_pt,eta,xi_pt,xi)
eta_points: do eta_pt=1,eta_npts
xi_points: do xi_pt=1,xi_npts
eta = eta_tab(eta_pt)
xi = xi_tab(xi_pt)
call potential_u_halfx2(eta,xi,xi_maxorder,tab_u_halfx2(:,xi_pt,eta_pt))
end do xi_points
end do eta_points
!$omp end parallel do
!
call TimerStop('Cache potential')
end subroutine cache_potential
end module general_tunnel_potential