forked from dragonfly/dragonfly
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathin_code_demo_2.py
48 lines (40 loc) · 1.57 KB
/
in_code_demo_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""
In code demo for discrete euclidean domains
"""
import numpy as np
from dragonfly import load_config, maximise_function
def hartmann6_3(x):
""" Hartmann function in 3D. """
pt = np.array([x[1][1]/11.0,
x[0][0],
x[0][2],
x[0][1],
x[2]/114.0,
x[1][0]/11.0,
])
A = np.array([[ 10, 3, 17, 3.5, 1.7, 8],
[0.05, 10, 17, 0.1, 8, 14],
[ 3, 3.5, 1.7, 10, 17, 8],
[ 17, 8, 0.05, 10, 0.1, 14]], dtype=np.float64)
P = 1e-4 * np.array([[1312, 1696, 5569, 124, 8283, 5886],
[2329, 4135, 8307, 3736, 1004, 9991],
[2348, 1451, 3522, 2883, 3047, 6650],
[4047, 8828, 8732, 5743, 1091, 381]], dtype=np.float64)
log_sum_terms = (A * (P - pt)**2).sum(axis=1)
alpha = np.array([1.0, 1.2, 3.0, 3.2])
return alpha.dot(np.exp(-log_sum_terms))
def main():
""" Main function. """
disc_euc_items = list(np.random.random((1000, 3)))
domain_vars = [{'type': 'discrete_euclidean', 'items': disc_euc_items},
{'type': 'float', 'min': 0, 'max': 11, 'dim': 2},
{'type': 'int', 'min': 0, 'max': 114},
]
config_params = {'domain': domain_vars}
config = load_config(config_params)
max_num_evals = 100
opt_val, opt_pt, history = maximise_function(hartmann6_3, config.domain, max_num_evals,
config=config)
print(opt_pt, opt_val)
if __name__ == '__main__':
main()