This repository has been archived by the owner on Feb 17, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·182 lines (137 loc) · 6.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Initialize the detectron2 logger and set its verbosity level to “DEBUG”.
from detectron2.utils.logger import setup_logger
setup_logger()
import os
from detectron2 import model_zoo
from detectron2.config import get_cfg
from config import settings, config
from common import dictionary_utils
from detectron2.data.datasets import register_coco_instances
from segmentation_model.train_net import BaseTrainer as bt
import yaml
def get_path():
"""
Get path for train and validation dataset
:return:
"""
# for debugging
if (config.debug):
train_path = os.path.join(settings.data_directory, str(config._version_),
config.train_config["train_year"] + '_processed', config._version_name,
str(config.train_config["train_image_size"]), config._version_train_)
validation_path = os.path.join(settings.data_directory, str(config._version_),
config.train_config["train_year"] + '_processed', config._version_name,
str(config.train_config["train_image_size"]), config._version_validation_
)
else:
train_path = os.path.join(settings.data_directory_cluster,
str(config._version_),
config.train_config["train_year"] + '_processed',
config._version_name,
str(config.train_config["train_image_size"]),
config._version_train_
)
validation_path = os.path.join(settings.data_directory_cluster,
str(config._version_),
config.train_config["train_year"] + '_processed',
config._version_name,
str(config.train_config["train_image_size"]),
config._version_validation_
)
return train_path,validation_path
def register_data_set():
"""
Register coco dataset on Detectron2
Returns:
"""
train_path,validation_path = get_path()
register_coco_instances("veg_train_dataset", {},
os.path.join(train_path, 'annotation', 'train' + config.train_config["train_year"] + '.json'),
os.path.join(train_path, 'images'))
register_coco_instances("veg_val_dataset", {},
os.path.join(validation_path, 'annotation', 'val' + config.train_config["train_year"] + '.json'),
os.path.join(validation_path, 'images'))
def calculate_num_classes(version_name):
train_path, validation_path = get_path()
annon = dictionary_utils.load_json(os.path.join(train_path, 'annotation', 'train' + config.train_config["train_year"] + '.json'))
classes = len(annon['categories'])
return(classes)
def setup():
"""
Create configs and perform basic setups.
"""
register_data_set()
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file(config.train_config["config_file"]))
# cfg.merge_from_file(os.path.join("config.yaml"))
cfg.DATASETS.TRAIN = ("veg_train_dataset",)
# cfg.DATASETS.TRAIN = ("street_val_dataset",)
cfg.DATASETS.TEST = ("veg_val_dataset",)
# cfg.DATASETS.TEST = ()
cfg.TEST.EVAL_PERIOD = config.train_config["eval_period"]
# cfg.MODEL.WEIGHTS = os.path.join(settings.weights_directory, "model_final.pth")
cfg.SOLVER.CHECKPOINT_PERIOD = config.train_config["checkpoint_period"]
cfg.SOLVER.BASE_LR = config.train_config["learning_rate"]
cfg.SOLVER.MAX_ITER = config.train_config["epochs"]
# cfg.INPUT.MASK_FORMAT = "polygon"
# cfg.MODEL.RPN.NMS_THRESH = 0.7
# cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST = 0.3
cfg.MODEL.ROI_HEADS.NUM_CLASSES = calculate_num_classes(config._version_name)
cfg.SOLVER.STEPS = config.train_config["solver_steps"]
# cfg.INPUT.MIN_SIZE_TRAIN = (800,)
# To stop auto resize
cfg.INPUT.MIN_SIZE_TEST = 0
cfg.MODEL.PIXEL_MEAN = config.train_config["PIXEL_MEAN"]
cfg.MODEL.RPN.PRE_NMS_TOPK_TRAIN = config.train_config["MODEL.RPN.PRE_NMS_TOPK_TRAIN"]
cfg.MODEL.RPN.PRE_NMS_TOPK_TEST = config.train_config["MODEL.RPN.PRE_NMS_TOPK_TEST"]
cfg.SOLVER.WARMUP_ITERS = config.train_config["SOLVER.WARMUP_ITERS"]
cfg.TEST.DETECTIONS_PER_IMAGE = 200
# cfg.MODEL.PIXEL_STD = config.train_config["PIXEL_STD"]
if(config.train_config["FPN"]):
cfg.MODEL.BACKBONE.NAME = config.train_config["backbone_name"]
cfg.MODEL.META_ARCHITECTURE = config.train_config["architecture_name"]
cfg.MODEL.BACKBONE.FREEZE_AT = config.train_config["freeze_at"]
if config.debug:
cfg.DATALOADER.NUM_WORKERS = 0 # for debug purposes
cfg.OUTPUT_DIR = settings.data_directory + '/output'
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 1
cfg.SOLVER.IMS_PER_BATCH = 1
else:
cfg.OUTPUT_DIR = settings.check_point_output_directory
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = config.train_config["batch_size"]
cfg.SOLVER.IMS_PER_BATCH = 128
if config.train_config["experiment_name"] == 'resampling_factor':
cfg.DATALOADER.SAMPLER_TRAIN = 'RepeatFactorTrainingSampler'
cfg.DATALOADER.REPEAT_THRESHOLD = config.train_config["experiment_value"]
if not config.train_config["train_from_scratch"]:
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(config.train_config["config_file"]) # Let training initialize from model zoo
cfg.MODEL.BACKBONE.FREEZE_AT = 0
else:
# scratch training
if not config.fcis_model['flag']:
cfg.MODEL.WEIGHTS = ''
# cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS = False
if config.fcis_model['flag']:
cfg.MODEL.BACKBONE.NAME = config.fcis_model["backbone_name"]
cfg.MODEL.META_ARCHITECTURE = config.fcis_model["architecture_name"]
cfg.MODEL.RPN.IN_FEATURES = config.fcis_model["RPN_IN_FEATURES"]
cfg.MODEL.ANCHOR_GENERATOR.SIZES =config.fcis_model["ANCHOR_GENERATOR.SIZES"]
cfg.MODEL.RESNETS.NORM = config.fcis_model["MODEL.RESNETS.NORM"]
cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = config.fcis_model["MODEL.ROI_BOX_HEAD.POOLER_TYPE"]
return cfg
def save_config_yaml(cfg):
dict_ = yaml.safe_load(cfg.dump())
with open(os.path.join(cfg.OUTPUT_DIR, 'config.yaml'), 'w') as file:
_ = yaml.dump(dict_, file)
def main():
cfg = setup()
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
save_config_yaml(cfg)
trainer = bt(cfg,config.train_config)
trainer.resume_or_load(resume=False)
trainer.train()
if __name__ == "__main__":
"""
mention number of epochs in command line argument 'epochs'
"""
main()