Skip to content

Latest commit

 

History

History
21 lines (18 loc) · 691 Bytes

README.md

File metadata and controls

21 lines (18 loc) · 691 Bytes

Project Description

Hierarchical Clustering Impementation : Hierarchical clustering refers to a class of clustering methods that seek to build a hierarchy of clusters, in which some clusters contain others. In this assignment, we will explore a top-down approach, recursively bipartitioning the data using k-means.

Packages used

  • graphlab
  • numpy
  • matplotlib
  • copy
  • scipy.stats - csr_matrix -
  • sys
  • os
  • time
  • sklearn.cluster - KMeans -
  • sklearn.metrics - pairwise_distances -

Used data set

people_wiki.gl

Algorithms used :

  • K-means.
  • Hierarchical Clustering .