-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTpy.py
100 lines (85 loc) · 3.35 KB
/
Tpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import sys
import numpy as np
sys.path.append("Y:")
import toy as toy
import matplotlib.pyplot as plt
plt.ion()
import seaborn as sns
import pandas as pd
class TempCalc:
def __init__(self,moho,isotherm_depths,surface_temp,Heat_prod=None):
self.isotherm_depths = isotherm_depths
self.moho = moho
self.T0 = surface_temp
if not Heat_prod is None: self.A = Heat_prod
else: self.A = 0
def __call__(self,args):
args = np.asarray(args)
'''
k1 = crustal therm. condtuctivity
k2 = mantle therm. conduct.
A = crustal heat production
qD = heatflux from mantle to crust
'''
if (self.A == 0):
k1,k2,qD,A = args.T
else:
k1,k2,qD = args.T
A = self.A
T = np.zeros(k1.shape+(len(self.isotherm_depths),))
moho = self.moho
for i,z in enumerate(self.isotherm_depths):
if z<=moho:
T[...,i]=self.T0+(qD+A*moho)/k1*z-A/(2.0*k1)*z**2
else:
T[...,i]=self.T0+moho*(qD/k1+0.5*A*moho/k1-qD/k2)+qD/k2*z
return T
class TempCalcExp:
def __init__(self,moho,isotherm_depths,surface_temp,Heat_prod=None):
self.isotherm_depths = isotherm_depths
self.moho = moho
self.T0 = surface_temp
if not Heat_prod is None: self.A = Heat_prod
else: self.A = 0
def __call__(self,args):
args = np.asarray(args)
if (self.A == 0):
k1,k2,qD,A = args.T
else:
k1,k2,qD = args.T
A = self.A
H0 = A #surface heat production
hr = 8000.0 #scale depth
T = np.zeros(k1.shape+(len(self.isotherm_depths),))
moho = self.moho
for i,z in enumerate(self.isotherm_depths):
if z<=moho:
exp = np.exp(-z/hr)
T[...,i] = self.T0 + qD*z/k1 + H0*hr**2/k1*(1-exp)
else:
exp1 = np.exp(-moho/hr)
Tm = self.T0 + qD*moho/k1 + H0*hr**2/k1*(1-exp1)
T[...,i] = Tm + (z-moho)*qD/k2
return T
#Test, runs when this script is executed individually
if __name__ == '__main__':
print('Main')
forward = TempCalc(20e3,[10e3,30e3],0.0)
fake_T = forward((2.5,3.0,110e-3,2.5e-6))
misfit = toy.IndependentGaussianMisfit(fake_T)
prior = toy.RangePrior([2.0,2.5,0.0,0.0],[3.0,3.5,200e-3,3.0e-6])
proposal = toy.ComponentUpdateProposal([0.04,0.15,2e-3,2.0e-7])
hyperPrior = toy.RangePrior([1.0],[100.0])
hyperProposal = toy.ComponentUpdateProposal([0.5])
x0 = np.array([2.75,3.25,100e-3,1.5e-6])
#Inversion with Markov-Chain-Monte-Carlo
xchain,hyperChain,Lchain,accepted = toy.MCMC(x0,forward,misfit,prior,
proposal,100000,
np.array([5.0]),hyperProposal,
hyperPrior)
#Probabilities with which next model is taken
for i in range(4):
print (np.sum(np.abs((np.diff(xchain[:,i],axis=0)))>0)*8.0/100000.0)
print(accepted)
#plots correlations and histograms
sns.pairplot(data=pd.DataFrame(xchain[50000:]))