-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAbsolute-Calculus.tex
147 lines (133 loc) · 6.07 KB
/
Absolute-Calculus.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
\documentclass[a4paper,12pt]{scrartcl}
\usepackage{pdflscape}
\usepackage{tabularx}
\usepackage{array}
\setlength{\extrarowheight}{6mm}
\usepackage{geometry}
\geometry{
a4paper,
total={185mm,277mm},
left=5mm,
right=5mm,
top=5mm,
bottom=5mm,
}
%\usepackage[subpreambles=true]{standalone}
\usepackage{amssymb}
\usepackage[leqno]{amsmath}
\usepackage{amsfonts}
\usepackage{mathtools}
\usepackage[symbol]{footmisc}
\renewcommand*{\thefootnote}{\fnsymbol{footnote}}
\usepackage{arydshln}
\usepackage{braket}
\providecommand{\ExtD}{\textrm{d}}
\providecommand{\Lie}{\mathcal{L}}
%https://tex.stackexchange.com/questions/48980/whole-page-table-with-tabularx
\begin{document}
\begin{landscape}
\thispagestyle{empty}
\noindent
\paragraph{ABSOLUTE DIFFERENTIAL CALCULUS {\small(Calculus of tensors)}}
\mbox{}\\
$\quad$Suppose $M$ is a smooth manifold, $x^\mu$ a coordinate chart. Denote by $\Omega(M)$ the algebra of differential forms on $M$ and by $\mathfrak{X}(M)$ the $C^\infty(M)$-module of vector fields. \\
\vspace{5mm}
\begin{tabularx}{\linewidth}{|c|X|c|c|c|c|}
\hline
& $f \in C^\infty(M)$ & $\ExtD x^\mu \in \Omega^1(M)$ & $\partial_\mu \in \mathfrak{X}(M)$ & $T_1 \otimes T_2$ & $\omega^{(k)} \wedge \beta$ \\
\hline
$\ExtD$ & $\left(\dfrac{\partial f }{\partial x^\nu} \right) \: \ExtD x^\nu$ & 0 & n/a & n/a & $\left( \ExtD \omega \right) \wedge \beta + (-)^k \omega \wedge \left( \ExtD\beta \right) $\\
%
$\Lie_X$ & $X(f) = X^\nu \left(\dfrac{\partial f }{\partial x^\nu} \right)$ & $\Lie_X \ExtD x^\mu = \ExtD\left(X^\mu\right) =\left(\dfrac{\partial X^\mu }{\partial x^\nu} \right) \ExtD x^\nu$ & $\Lie_X \partial_\mu = [X, \partial_\mu]$ & $\left(\Lie_X T_1\right) \otimes T_2 + T_1 \otimes \left(\Lie_X T_2 \right)$ & $\left( \Lie_X \omega \right) \wedge \beta + \omega \wedge \left(\Lie_X\beta \right)$ \\
%
$\iota_X$ & $0$ & $\iota_X \ExtD x^\mu = \ExtD x^\mu (X) = X^\mu$ & $0$ & $\left(\iota_X T_1\right) \otimes T_2 + T_1 \otimes \left(\iota_X T_2 \right)$ & $\left( \iota_X \omega \right) \wedge \beta + (-)^k \omega \wedge \left( \iota_X\beta \right) $ \\
%
\cdashline{4-5}
$g^\ast$ \footnotemark[4] & $g^\ast \left(f\right) = f \circ g $ & $ g^\ast \left(\ExtD x^\mu \right) = \ExtD\left(x^\mu \circ g \right)$ &$(g^{-1})_\ast \partial_\mu = \dfrac{\partial[g^{-1}]^A}{\partial x^\mu}\partial_A$ \quad \footnotemark[3] & $g^\ast \left( T_1\right) \otimes g^\ast \left( T_2\right)$ \quad \footnotemark[3] & $g^\ast\left(\omega\right) \wedge g^\ast \left( \beta \right)$\\
\hdashline
%$\nabla_X$ & $\nabla_X f = X(f) $ & & & & \\
$\nabla_X$ & $\nabla_X f = X(f) = X^\nu \left(\dfrac{\partial f }{\partial x^\nu} \right)$ & $\nabla_X \ExtD x^\mu = X^\nu \left( - \Gamma^\mu_{\, \nu \, \alpha} \right) \ExtD x^\alpha$ & $\nabla_X \partial_\mu =X^\nu \Gamma^\alpha_{\, \nu \, \mu} \partial_\alpha$ & $\left(\nabla_X T_1\right) \otimes T_2 + T_1 \otimes \left(\nabla_X T_2 \right)$ & $\left( \nabla_X \omega \right) \wedge \beta + \omega \wedge \left(\nabla_X\beta \right)$\\%& & & & & \\
\hdashline
\end{tabularx}
\begin{minipage}[c][.45\textheight]{0.46 \linewidth}
The first four operation are naturally defined on every smooth manifold.
\fbox{
\parbox{\textwidth}{
\begin{displaymath}
\mathcal{T}(M) = \left(\bigoplus_{l,k=0}^\infty
T^k_l(M),
\otimes \right)
\qquad \textrm{\emph{Tensor Algebra} on M}
\end{displaymath}
is a bi-graded algebra over the ring $C^\infty(M)$.
}
}
\vfill
\fbox{
\parbox{\textwidth}{
$(\mathfrak{X}(M) , [-,-])$ form a Lie algebra over $\mathbb{R}$:
\begin{align}
[X,Y] &= -[Y,X] \\
[aX + bY, Z] &= a[X,Z] + b[Y,Z] \\
[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] &= 0
\end{align}
}
}
\vfill
\fbox{
\parbox{\textwidth}{
Lie bracket is defined by the following (redundant) equations:
\begin{align*}
\left[\partial_i, \partial_j\right] &= 0 \\
\left[f \partial_i , g \partial_j\right] &= f \cdot (\partial_i g)\cdot\partial_j - g\cdot(\partial_j f )\cdot\partial_i \\
\left[f X , g Y \right] &= f\cdot g\cdot[X,Y] + f\cdot X(g)\cdot Y - g\cdot Y(f)\cdot X \\
\left[X ,Y\right] &= \left( X^i \partial_i Y^j - Y^i\partial_i X^j \right) \partial_j
\end{align*}
}
}
\end{minipage}
\hspace{1cm}
\setcounter{equation}{0}
\begin{minipage}[c][.485\textheight]{0.46 \linewidth}
The last one is not natural, it is an additional structure given to $M$:\\
\fbox{
\parbox{\textwidth}{
\emph{Affine connection}
\begin{align*}
\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) &\longrightarrow \mathfrak{X}(M) \\
(X,Y) &\longmapsto \nabla_X Y
\end{align*}
such that: \hfill {\small ($\forall a \in \mathbb{R}, f \in C^\infty(M)$)}% $\forall X,Y,Z \in \mathfrak{X}(M)$, $\forall a \in \Real$, $\forall f \in C^\infty(M)$:
\begin{align}
\nabla_{(X+ a Z)} Y &= \nabla_X Y + a \nabla_Z Y \\
\nabla_{X} \left( Y+ a Z \right) &= \nabla_X Y + a \nabla_X Z \\
\nabla_{f\, X} Y &= f \, \nabla_X Y \\
\nabla_{X}\left( f \, Y\right) &= \left(X( f ) \right)\, Y + f \, \left(\nabla_X Y \right)
\end{align}
}
}
\vfill
\fbox{
\parbox{\textwidth}{
\begin{displaymath}
\Gamma^\alpha_{\, \mu \, \nu} = \ExtD x^\alpha \left( \nabla_{\mu} \partial_\nu \right)
\qquad \textrm{\emph{Christoffel symbols} of $\nabla$}
\end{displaymath}
}
}
\vfill
\fbox{
\parbox{\textwidth}{
Extension of operator $\nabla_X$ from $\mathfrak{X}(M)$ to $\Omega^1(M)$ is implemented by:
\begin{displaymath}
\braket{ \nabla_X \omega | Y } \coloneqq
\nabla_X\braket{ \omega | Y} -
\braket{ \omega | \nabla_X Y}
\end{displaymath}
}
}
\end{minipage}
\footnote[4]{$g: N \to M$, $(y^A) \mapsto (x^\mu) $}
\footnote[3]{Caveat: pull-back is well defined on arbitrary tensors when $g$ is a diffeomorphism. Otherwise is only defined on purely covariant tensors.}
\end{landscape}
\end{document}