diff --git a/fecon236/parse/sec.py b/fecon236/parse/sec.py index c6a903f..8b91c67 100644 --- a/fecon236/parse/sec.py +++ b/fecon236/parse/sec.py @@ -1,23 +1,28 @@ # Python Module for import Date : 2018-06-12 # vim: set fileencoding=utf-8 ff=unix tw=78 ai syn=python : per PEP 0263 -''' -_______________| sec.py :: Parse SEC, U.S. Securities and Exchange Commission +"""Parse SEC, U.S. Securities and Exchange Commission -For BEST results via pandas: install lxml, - and as fallback: bs4 and html5lib. +For BEST results via pandas: install `lxml`,and as fallback: `bs4` and +`html5lib`. -REFERENCES: +Notes +----- +For LATEST version, see https://git.io/fecon236 -- SEC form 13F, http://www.sec.gov/answers/form13f.htm +References +---------- +- SEC form 13F, http://www.sec.gov/answers/form13f.htm - fecon235 notebook SEC-13F-parse.ipynb derives and debugs this module. For static view, see https://git.io/13F -CHANGE LOG For LATEST version, see https://git.io/fecon236 -2018-05-29 sec.py, fecon236 fork. Fix imports, pass flake8. - Fix internal doctest: usd "nnn" expressed now as "nnn.0". -2016-02-22 yi_secform.py, fecon235 v5.18.0312, https://git.io/fecon235 -''' +Change Log +---------- + +* 2018-05-29 `sec.py`, `fecon236` fork. Fix imports, pass flake8. + Fix internal doctest: usd "nnn" expressed now as "nnn.0". +* 2016-02-22 `yi_secform.py`, fecon235 v5.18.0312, https://git.io/fecon235 +""" from __future__ import absolute_import, print_function, division @@ -31,7 +36,7 @@ def parse13f(url=druck150814): - '''Parse SEC form 13F into a pandas dataframe.''' + """Parse SEC form 13F into a pandas dataframe.""" # url should be for so-called Information Table in html/xml format. url = url.replace('https://', 'http://') # https cannot be read by lxml, surprisingly! @@ -60,17 +65,23 @@ def parse13f(url=druck150814): def pcent13f(url=druck150814, top=7654321): - '''Prune, then sort SEC 13F by percentage allocation, showing top N. - >>> pcent13f(top= 7) - stock cusip usd putcall pcent - 27 SPDR Gold Trust 78463V907 323626.0 NaN 21.81 - 15 Facebook Inc 30303M102 160612.0 NaN 10.82 - 29 Wells Fargo & Co 949746101 94449.0 NaN 6.36 - 31 LyondellBasell Ind's NV N53745100 74219.0 NaN 5.00 - 18 Halliburton Co 406216101 66629.0 NaN 4.49 - 16 Freeport-McMoRan Inc 35671D857 66045.0 NaN 4.45 - 8 Citigroup Inc 172967424 64907.0 NaN 4.37 - ''' + """Prune, then sort SEC 13F by percentage allocation, showing top N. + + Usage + ----- + + :: + + >>> pcent13f(top= 7) + stock cusip usd putcall pcent + 27 SPDR Gold Trust 78463V907 323626.0 NaN 21.81 + 15 Facebook Inc 30303M102 160612.0 NaN 10.82 + 29 Wells Fargo & Co 949746101 94449.0 NaN 6.36 + 31 LyondellBasell Ind's NV N53745100 74219.0 NaN 5.00 + 18 Halliburton Co 406216101 66629.0 NaN 4.49 + 16 Freeport-McMoRan Inc 35671D857 66045.0 NaN 4.45 + 8 Citigroup Inc 172967424 64907.0 NaN 4.37 + """ df = parse13f(url) # Drop irrevelant COLUMNS: df.drop(df.columns[[1, 4, 5, 7, 8, 9, 10, 11]], axis=1, inplace=True)