-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbaseline.py
90 lines (81 loc) · 3.15 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""
Some common functions used by pca.py, kmeans10.py, knn.py.
"""
import numpy as np
import pandas as pd
from numpy import genfromtxt
from datetime import datetime
from sklearn.metrics import confusion_matrix
from training_util import USE_10MS
def readfile(path):
matrix = genfromtxt(path, delimiter=',', skip_header=1)
matrix = np.delete(matrix, 0, axis=1)
return matrix
def calnum(starttime, trigtime, successtime, completetime):
# this method is currently unused
'''
starttmp = starttime.split(".")
#print(starttmp)
start = starttmp[0].split(":")
start.append(starttmp[1])
trigtmp = trigtime.split(".")
trig = trigtmp[0].split(":")
trig.append(trigtmp[1])
successtmp = successtime.split(".")
success = successtmp[0].split(":")
success.append(successtmp[1])
#print(start)
# trignum = (int(trig[1])-int(start[1]))*600 + (int(trig[2])-int(start[2]))*10 + (int(trig[3])-int(start[3]))
# successnum = (int(success[1])-int(start[1]))*600 + (int(success[2])-int(start[2]))*10 + (int(success[3])-int(start[3]))
'''
startobj = datetime.strptime(starttime, "%H:%M:%S.%f")
trigobj = datetime.strptime(trigtime, "%H:%M:%S.%f")
successobj = datetime.strptime(successtime, "%H:%M:%S.%f")
completeobj = datetime.strptime(completetime, "%H:%M:%S.%f")
trignum = int(1 + (trigobj - startobj).total_seconds() * 10) # 1000/100
successnum = int(1 + (successobj - startobj).total_seconds() * 10)
completenum = int(1 + (completeobj - startobj).total_seconds() * 10)
return [trignum,successnum,completenum]
def fp(labels, trig, success, complete):
total = len(labels)
# construct truth labels
# samples in entire abnormal period (trig to stop) assumed to be TP:
truth_labels = np.zeros(total)
#truth_labels[trig:complete + 1].fill(1)
truth_labels[trig:].fill(1)
tn, fp, fn, tp = confusion_matrix(truth_labels, labels).ravel()
print("!!!fp number:" + str(fp))
# should be same as
# cluster1 = sum(labels[0:trig-1]) + sum(labels[complete:total-1])
# print("!!!fp number:" + str(cluster1))
is_detected = False
leadtime = 0
# get lead time
t = sum(labels[trig:success])
if (t==0):
print("No detection!!!")
else:
firstdet = list(labels[trig:success]).index(1)
leadtime = (success - (firstdet + trig))/10
print("!!!Lead time is: {} seconds".format(leadtime))
is_detected = True
# other metrics
#acc = (tp+tn)/(tp+fp+fn+tn)
fpr = fp/(fp + tn)
#tpr = tp/(tp + fn)
return fpr, leadtime, is_detected
def prepare():
timing_file = "./data/Experiment-100ms.xlsx"
df = pd.read_excel(f"{timing_file}", header=None)
app = ""
app_time = dict()
for index, row in df.iterrows():
if row[0] == "Application":
app = row[1]
app_time[app] = [[] for i in range(4)] # assuming the sample numbers start from 1
if row[0] in ("exploit command 1 entered", "shell returned", "command returned", "all commands ended"):
for i in range(4):
app_time[app][i].append(row[1 + 3 * i])
return app_time
# app_time = prepare()
# print(app_time)