-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmembrane_transport_1d.h
232 lines (186 loc) · 8.32 KB
/
membrane_transport_1d.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*
* Copyright (c) 2009-2019: G-CSC, Goethe University Frankfurt
*
* Author: Markus Breit
* Creation date: 2017-08-15
*
* This file is part of NeuroBox, which is based on UG4.
*
* NeuroBox and UG4 are free software: You can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License version 3
* (as published by the Free Software Foundation) with the following additional
* attribution requirements (according to LGPL/GPL v3 §7):
*
* (1) The following notice must be displayed in the appropriate legal notices
* of covered and combined works: "Based on UG4 (www.ug4.org/license)".
*
* (2) The following notice must be displayed at a prominent place in the
* terminal output of covered works: "Based on UG4 (www.ug4.org/license)".
*
* (3) The following bibliography is recommended for citation and must be
* preserved in all covered files:
* "Reiter, S., Vogel, A., Heppner, I., Rupp, M., and Wittum, G. A massively
* parallel geometric multigrid solver on hierarchically distributed grids.
* Computing and visualization in science 16, 4 (2013), 151-164"
* "Vogel, A., Reiter, S., Rupp, M., Nägel, A., and Wittum, G. UG4 -- a novel
* flexible software system for simulating PDE based models on high performance
* computers. Computing and visualization in science 16, 4 (2013), 165-179"
* "Stepniewski, M., Breit, M., Hoffer, M. and Queisser, G.
* NeuroBox: computational mathematics in multiscale neuroscience.
* Computing and visualization in science (2019).
* "Breit, M. et al. Anatomically detailed and large-scale simulations studying
* synapse loss and synchrony using NeuroBox. Front. Neuroanat. 10 (2016), 8"
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*/
#ifndef UG__PLUGINS__NEURO_COLLECTION__MEMBRANE_TRANSPORT_1D_H
#define UG__PLUGINS__NEURO_COLLECTION__MEMBRANE_TRANSPORT_1D_H
//#include "bindings/lua/lua_user_data.h"
#include "common/util/smart_pointer.h"
#include "lib_disc/spatial_disc/elem_disc/inner_boundary/inner_boundary.h"
#include "membrane_transporters/membrane_transporter_interface.h"
#include "../cable_neuron/util/diam_attachment_handler.h" // attachment handling for diameter attachment
namespace ug {
namespace neuro_collection {
///@addtogroup plugin_neuro_collection
///@{
/// 1d finite volume element discretization for the inner BndCond on a two-sided membrane
/**
* This class implements the InnerBoundary interface to provide element local
* assemblings for the unknown-dependent flux over a membrane, where the flowing
* unknowns are present on both sides of the membrane.
* This is a special implementation for a 1d "cable" representation of a perfectly
* rotationally symmetric membrane.
* The radius at which the membrane is located must be provided, either as an explicit
* constant or as a diameter attachment in the grid as in cable_neuron applications.
*/
template<typename TDomain>
class MembraneTransport1d
: public IElemDisc<TDomain>
{
public:
/// world dimension
static const int dim = IElemDisc<TDomain>::dim;
typedef InnerBoundaryFluxCond FluxCond;
typedef InnerBoundaryFluxDerivCond FluxDerivCond;
public:
/// constructor with c-string
MembraneTransport1d(const char* subsets, SmartPtr<IMembraneTransporter> mt);
/// constructor with vector
MembraneTransport1d(const std::vector<std::string>& subsets, SmartPtr<IMembraneTransporter> mt);
/// destructor
virtual ~MembraneTransport1d();
/// adding density information for pumps/channels in membrane
void set_density_function(SmartPtr<CplUserData<number,dim> > densityFct);
/// adding density information for pumps/channels in membrane
void set_density_function(const number dens);
/// adding density information for pumps/channels in membrane
void set_density_function(const char* name);
/// set radius of plasma membrane
void set_radius(number r);
/// set plasma membrane radius fraction at which membrane (ERM or PM) is located
void set_radius_factor(number r);
/// the flux function
/** This is the actual flux function defining the flux density over the boundary
* depending on the unknowns on the boundary;
*/
bool fluxDensityFct
(
const std::vector<LocalVector::value_type>& u,
GridObject* e,
const MathVector<dim>& cc,
int si,
FluxCond& fc
);
/** This is the flux derivative function defining the flux density derivatives over the boundary
* depending on the unknowns on the boundary;
*/
bool fluxDensityDerivFct
(
const std::vector<LocalVector::value_type>& u,
GridObject* e,
const MathVector<dim>& cc,
int si,
FluxDerivCond& fdc
);
public: // inherited from IElemDisc
/// @copydoc IElemDisc::approximation_space_changed()
virtual void approximation_space_changed();
/// type of trial space for each function used
virtual void prepare_setting(const std::vector<LFEID>& vLfeID, bool bNonRegularGrid);
/// returns if hanging nodes are used
virtual bool use_hanging() const;
/// @copydoc IElemDisc<TDomain>::prepare_timestep()
//template <typename TAlgebra>
void prep_timestep(number future_time, number time, VectorProxyBase* upb);
/// prepares the loop over all elements
template<typename TElem, typename TFVGeom>
void prep_elem_loop(const ReferenceObjectID roid, const int si);
/// prepares the element for assembling
template<typename TElem, typename TFVGeom>
void prep_elem(const LocalVector& u, GridObject* elem, const ReferenceObjectID roid, const MathVector<dim> vCornerCoords[]);
/// finishes the loop over all elements
template<typename TElem, typename TFVGeom>
void fsh_elem_loop();
/// assembles the local stiffness matrix using a finite volume scheme
template<typename TElem, typename TFVGeom>
void add_jac_A_elem(LocalMatrix& J, const LocalVector& u, GridObject* elem, const MathVector<dim> vCornerCoords[]);
/// assembles the local mass matrix using a finite volume scheme
template<typename TElem, typename TFVGeom>
void add_jac_M_elem(LocalMatrix& J, const LocalVector& u, GridObject* elem, const MathVector<dim> vCornerCoords[]);
/// assembles the stiffness part of the local defect
template<typename TElem, typename TFVGeom>
void add_def_A_elem(LocalVector& d, const LocalVector& u, GridObject* elem, const MathVector<dim> vCornerCoords[]);
/// assembles the mass part of the local defect
template<typename TElem, typename TFVGeom>
void add_def_M_elem(LocalVector& d, const LocalVector& u, GridObject* elem, const MathVector<dim> vCornerCoords[]);
/// assembles the local right hand side
template<typename TElem, typename TFVGeom>
void add_rhs_elem(LocalVector& rhs, GridObject* elem, const MathVector<dim> vCornerCoords[]);
private:
template <typename List>
struct RegisterPrepTimestepFct
{
RegisterPrepTimestepFct(MembraneTransport1d* p)
{
static const bool isEmpty = boost::mpl::empty<List>::value;
(typename boost::mpl::if_c<isEmpty, RegEnd, RegNext>::type (p));
}
struct RegEnd
{
RegEnd(MembraneTransport1d*) {}
};
struct RegNext
{
RegNext(MembraneTransport1d* p)
{
typedef typename boost::mpl::front<List>::type AlgebraType;
typedef typename boost::mpl::pop_front<List>::type NextList;
size_t aid = bridge::AlgebraTypeIDProvider::instance().id<AlgebraType>();
// TODO: should be (with a TAlgebra-templated version of this method):
// p->set_prep_timestep_fct(aid, &MembraneTransport1d::prep_timestep<AlgebraType>);
p->set_prep_timestep_fct(aid, &MembraneTransport1d::prep_timestep);
(RegisterPrepTimestepFct<NextList> (p));
}
};
};
void register_assembling_funcs();
protected:
number m_radiusFactor;
number m_constRadius;
bool m_bConstRadiusSet;
ANumber m_aDiameter; ///< diameter attachment
Grid::AttachmentAccessor<Vertex, ANumber> m_aaDiameter; ///< diameter attachment accessor
cable_neuron::DiamAttachmentHandler m_dah; ///< handler for multigrid usage of diameter attachment
SmartPtr<CplUserData<number,dim> > m_spDensityFct;
SmartPtr<IMembraneTransporter> m_spMembraneTransporter;
private:
int m_currSI;
};
///@}
} // end namespace neuro_collection
} // end namespace ug
#endif // UG__PLUGINS__NEURO_COLLECTION__MEMBRANE_TRANSPORT_1D_H